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SUMMARY 

The exosomes released by peripheral reticulocytes were originally thought to 

function as vehicles for protein clearance for the maturing cells.  With the emergence of 

exosomes as mediators of intercellular communication, a new paradigm exists for the role 

of reticulocyte-derived exosomes in both healthy and disease states, particularly conditions 

whose pathology is driven by the red blood cell and its precursors.  However, no standard 

or detailed method for the isolation of human peripheral CD71+ reticulocytes exists.  A 

combination of density-dependent and immunomagnetic approaches was used to 

demonstrate a procedure to isolate human CD71+ reticulocytes from peripheral blood. 

Nearly 90% of the CD71+ cells were distinct from the CD71- population when measured 

with flow cytometry detection of RNA.  CD71+ reticulocyte-derived exosomes were then 

isolated and analyzed after incubation in vitro, the first such demonstration of these 

phenomena using these cells.  These findings form the basis for more targeted and 

mechanistic studies into the role of reticulocyte-derived exosomes in pathologies like sickle 

cell disease. 
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CHAPTER 1. INTRODUCTION  

1.1 Sickle Cell Disease: A Global Challenge  

Sickle cell disease (SCD), the first disorder determined to have a genetic basis, is 

caused by homozygosity for the mutated β-hemoglobin allele (Pauling, 1949; Barabino, 

2010).  A point mutation in this allele causes red blood cells (RBCs) to express two sickle 

β-hemoglobin subunits in each hemoglobin tetramer that polymerize and cause sickling of 

the RBC in response to deoxygenation.  An estimated 300,000 people are born with SCD 

every year worldwide and 5% of the global population are heterozygous carriers of the 

sickle β-hemoglobin allele among other hemoglobin disorder variants (World Health 

Organization, 2014).  Moreover, life expectancies are shortened at averages of 42 and 48 

years for males and females in the United States, respectively (Platt, 1994).  In 2008 the 

United Nations recognized SCD as a major public health concern because of its rising 

prevalence globally, particularly in African countries, and concurrent need for better 

screening, management, and therapies.  Hydroxyurea is the only FDA-approved drug 

indicated to treat the disease, and there exists a substantial need to develop new therapies. 

1.2 Reticulocyte-Derived Exosomes, and Sickle Cell Disease 

Reticulocytes are immature red blood cells (RBCs) that, like mature RBCs, lack a 

nucleus. In the 1980s reticulocytes were the first cell type shown to release intracellular 

materials into nanometer-scale vesicles called exosomes as they develop into mature RBCs 

and prepare to enter the bloodstream (Pan, 1983; Pan, 1985; Wagner, 1986; Johnstone, 

1987).  In SCD there are more reticulocytes present in the circulation (Kaul, 1983), 
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suggesting that conditions are more conducive for these cells to cross the endothelial cell 

barrier that separates the bone marrow and the bloodstream.  Sickle reticulocytes have been 

shown to have increased surface expression of the α4β1 integrin which is a ligand for the 

endothelial cell protein vascular cell adhesion molecule 1 (VCAM-1) (Gee, 1995; Styles, 

1997). Mature RBCs do not express α4β1.  Moreover, sickle reticulocytes have been shown 

to bind to endothelial cells via α4β1 and VCAM-1 more than mature sickle RBCs. Thus, 

they are currently thought to initiate vaso-occlusion, or blood flow blockage, in the 

vasculature by adhering to mature sickle RBCs as well as white blood cells in the 

circulation which then leads to increased adhesion at the vessel wall and ultimately blood 

flow blockage (Barabino, 1987; Joneckis, 1993; Swerlick, 1993; Barabino, 2010).   

What is unknown is whether exosomes released by reticulocytes package 

macromolecules—e.g., RNAs or proteins—could be transferred to surrounding cells in a 

mode of uni- or bidirectional cell-cell communication in both healthy and disease states 

(Valadi, 2007, Figure 1).  Could these reticulocyte-derived exosomes themselves precipate 

interactions between the endothelial cells that line the vessel wall and the blood cells in the 

circulation?  Moreover, elucidating a possible mechanism of reticulocyte-dependent 

initiation of vaso-occlusion could ultimately uncover potential points of reticulocyte 

control that could delay the onset, or reduce the frequency of, vaso-occlusion—essentially 

stopping the damage to the vessel before it even happens.  Therefore, the overarching 

clinical context of this thesis was moving incrementally towards a reticulocyte-dependent 

mechanism that may be involved in vaso-occlusion in sickle cell disease, the modulation 

of which would prevent endothelial cell damage before it occurs during vaso-occlusion.   
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Figure 1 – Schematic of peripheral reticulocytes (image generated in this thesis) 

releasing exosomes into the peripheral circulation.  These exosomes could be 

internalized by the endothelial cells that line the vessel wall in a mode of cell-cell 

communication. 

1.3 The Need for a Standard Peripheral Reticulocyte Isolation Method 

Achieving a reliable approach for isolating reticulocytes from adult peripheral blood 

is first necessary to investigate the functions of human reticulocyte-derived exosomes in 

both healthy and disease sates.  Peripheral blood, although an obvious and the most 

accessible source of human reticulocytes, has been supplanted by other blood sources for 

the isolation of these cells. This has been due to the challenges associated with harvesting 

usable yields of these cells consistently, given their low numbers—0.5-2.5% of 

erythrocytes—in the circulation of healthy adults (Kumar, 2015).  Consequently, no 

standard or widely available detailed protocol exists for the isolation of these cells from 

peripheral blood.  For disease states like sickle cell disease, in which the likelihood of 

reticulocytes being procured from alternative blood sources is low, developing a peripheral 

reticulocyte isolation method is essential. 

Current techniques for the isolation or enrichment of reticulocytes from whole blood 

are stem cell-based (Giarratana, 2005; Griffiths, 2012, Blood), immunomagnetic (Brun, 

1990), or density-dependent (Rushing, 1987; Sorette, 1992; Kumar, 2015).  Each technique 

has its benefits and drawbacks particularly when labor-intensity, cost, and complexity are 
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considered.  Stem cell-based approaches typically require the isolation and long-term 

culture of CD34+ hematopoietic progenitor stem cells (Griffiths, 2012, Blood).  These 

progenitor cells can be present in the peripheral blood at lower levels than reticulocytes 

and thus their isolation can also be doubly challenging (Kikuchi-Taura, 2006).  Density-

dependent approaches, while they can be more labor-intensive, are low-cost, relatively 

straightforward, and oftentimes do not require any specialized equipment.  

Immunomagnetic approaches, while more expensive than density-dependent and requiring 

specialized equipment, offer high specificity for targeted detection of cell surface markers 

in small samples (< 5mL).     

1.4 Specific Aims 

The objective of this thesis was to demonstrate and validate a peripheral reticulocyte 

and reticulocyte-derived exosome isolation approach that is a launching pad for more 

targeted studies on these cells and their exosomes.  This approach is both timely and needed 

for the continued investigation of reticulocyte maturation and exosome biogenesis.  The 

completion of these aims also offers a new paradigm for the study of diseases states driven 

by reticulocyte-dependent processes.  This project’s objective was met with the following 

specific aims. 

1. Specific Aim 1: Establish a protocol for the isolation of CD71+ cells from adult 

peripheral blood 

2. Specific Aim 2:  Determine whether CD71+ cells release exosomes in vitro 

3. Specific Aim 3:  Demonstrate that CD71+ cell-derived exosomes can be delivered 

to endothelial cells 
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The completion of Aim 1 produced the first widely available, detailed, and visual 

human peripheral blood reticulocyte isolation protocol, fulfilling a need in the hematology 

community.  Developing this protocol was especially necessary for groups (especially 

trainees) that need reticulocytes from peripheral blood if no other sources are available.  

Similarly, the completion of Aim 2 was the first demonstration of exosomes released by 

human adult peripheral CD71+ cells in vitro, the further characterization of which may 

foster continued study on reticulocyte biology, maturation, and involvement in disease.  

The completion of Aim 3 will be the first demonstration of CD71+ exosomes being 

delivered to endothelial cells and the next step of determining what is being delivered will 

be a new direction in the study of reticulocyte-dependent diseases e.g., sickle cell disease. 

Overall, this thesis was conceived around the clinical pathology of sickle cell disease 

and was focused on better understanding the cell at the source of the pathology: the 

developing red blood cell, specifically the reticulocyte.  Through the completion of these 

aims, the foundation is set to execute studies that delve into both healthy and sickle 

reticulocyte and reticulocyte-derived exosome function to ultimately develop much-needed 

therapies.  Table 1 provides an overview of this dissertation’s organization.   



 6 

Table 1 – Overview of dissertation. 

  

Chapter Title Content 

2 Literature Review 
Overview of reticulocyte maturation, exosomes, 

and clinical relevance to sickle cell disease 

3 

The Isolation of Human 

Reticulocytes from 

Peripheral Blood 

Studies related to Aim 1 

4 CD71+ Cell Release of 

Exosomes in vitro 
Studies related to Aim 2 

5 
Delivery of Exosomes to 

Endothelial Cells 
Studies related to Aim 3 

6 Conclusion 
Key findings drawn from thesis; future research 

directions 

Appendix - Select protocols & R code 



 7 

CHAPTER 2. LITERATURE REVIEW  

2.1 The Clinical Context: Sickle Cell Disease 

Sickle cell disease (SCD), the first disorder determined to have a genetic basis, is 

caused by homozygosity for the mutated β-hemoglobin allele (Pauling, 1949; Barabino, 

2010).  A point mutation in this allele substitutes a hydrophobic valine for a hydrophilic 

glutamic acid residue in the β-hemoglobin protein product. Mature red blood cells thus 

express two sickle β-hemoglobin (HbS) subunits in each hemoglobin tetramer.  The 

presence of the valine residue renders the HbS monomer more prone to hydrophobic 

interactions between itself and the hydrophobic amino acids in other globin chain subunits.  

Moreover, HbS polymerization in response to deoxygenation mediates the characteristic 

sickling of red blood cells in SCD.   

It is estimated that 300,000 people are born with SCD worldwide every year and that 

5% of the global population (~350 million) are carriers for the sickle gene and thalassemia 

variants (World Health Organization, 2014). The life expectancies for men and women 

living with SCD is only 42 and 48 years, respectively (Platt, 1994).  Hydroxyurea is the 

only FDA-approved drug available to treat the disease, and there exists a great need to 

develop new SCD therapies. 

Currently, SCD pathophysiology is categorized into two major processes: vaso-

occlusion and hemolysis (Steinberg, 2008; Rees, 2010).  Vaso-occlusion in the 

microvasculature can occur because of sickle red blood cells’ reduced deformability 

inhibiting their ability to flow through the smaller vessels, which can then precipitate the 
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sickle cell crisis (Ballas, 1992).  This localized ischemia, or blockage and reduction of 

blood flow, can eventually lead to inflammation cascades and infarction in the different 

organ systems.  Some examples are clinical reports of acute chest syndrome, osteonecrosis, 

and acute pain.  Hemolysis is also driven by HbS polymerization.  Polymerization can 

cause red blood cells to lyse, releasing their contents into either blood vessels or 

surrounding tissue.  Hemolysis within the blood vessel can also have an adverse reaction 

on nitric oxide bioavailability and promote the generation of reactive oxygen species, 

which can then initiate more inflammatory and white blood cell interaction cascades (Rees, 

2010).  Ultimately however, SCD’s phenotypic profile varies in complexity and severity 

by patient.   

Another clinical manifestation of SCD that is of interest is reticulocytosis, or the 

increased presence of reticulocytes in the circulations of sickle cell patients (Kaul, 1983).  

The increased number of reticulocytes in SCD is attributed to the peripheral destruction 

(hemolysis as described above) of sickle RBCs in circulation in the bone marrow.  

Peripheral destruction of red blood cells could lead to anemia, the decrease in the normal 

number of mature RBCs in circulation.  The currently presumed compensatory mechanism 

is an increase in RBC production, which leads to marrow hyperplasia and reticulocytosis, 

two clinically observed events (Kaul, 1983; Almeida, 2005). 

Overall, much is known about hemoglobin polymerization, red blood cell sickling 

and unsickling cycles and the permanent damage they cause to red blood cell membranes, 

reticulocytosis, and red blood cell/reticulocyte adhesion to endothelial cells that can 

precipitate vaso-occlusion in the vasculature—all in the context of SCD (Rees, 2010; 

Barabino, 2010).  However, there is still an overarching and critical need to develop 
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therapies, which requires exploring new avenues.  Investigation of the factors the 

precipitate the onset of vaso-occlusion—the most common manifestation of the disease—

in the microvasculature (capillaries and post-capillary venules) has been an area of 

concentrated efforts. The current understanding of vaso-occlusion is that reticulocytes 

initiate the process by adhering to the mature sickle red blood cells as well as white blood 

cells in circulation.  Progressive blockage of blood flow follows (Barabino, 2010). 

This thesis uses what is known about cellular interactions in the circulation in SCD 

and takes an intellectual step back to investigate the source of the pathology: the developing 

red blood cell, specifically the reticulocyte.   

2.2 Reticulocytes 

Reticulocytes are the immediate precursor to the erythrocyte, the mature red blood 

cell.  Originating in the bone marrow from erythroid progenitors, reticulocytes lose their 

nucleus just before entering the peripheral circulation (Ney, 2011). What differentiates 

reticulocytes from their more mature form is the presence of organelles and residual RNA 

in their cytoplasms (called reticulum and granules) and their relative size; reticulocytes are 

10-15µm in diameter, while erythrocytes are 7-8µm (Riley, 2001).  These RNA aggregates 

and reticulum when stained with an RNA dye are shown in an increasing stage of 

maturation in Figure 2.  Stage 0 represents the reticulocyte precursor (orthochromatic 

normoblast) prior to enucleation.  Stage 1 shows the reticulocyte, now enucleated, with a 

concentrated area of RNA, likely left over after the enucleation.  Stage 2 shows the 

concentrated RNA area beginning to loosen, signaling increased maturation and the 

formation of an RNA reticulum network rather than aggregate.  Stage 3 shows the increase 
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in size of the RNA reticulum and Stage 4 shows the remnants of the reticulum once the 

reticulocyte has reached its most mature form. The consensus currently is that the RNA is 

gradually lost as the reticulocyte synthesizes the proteins it will need in its mature form.  

The use of supravital cationic dyes like new methylene blue or brilliant cresyl blue make 

this type of imaging possible, as the dyes form a noticeable blue precipitate when bound to 

RNA. 

 

Figure 2 – Representative images of stained reticulocytes durng maturation.  The 

stages are explained in the text. Adapted from Riley, 2001, page 269. 

Organelles like mitochondria and ribosomes are also present to support hemoglobin 

synthesis until they are expelled from the reticulocyte via micron-scale autophagic vesicles 

as they fully mature (Griffiths, 2012, Autophagy).  In healthy individuals, reticulocytes 

mature over the course of twenty-four hours, a fairly rapid process, and the presence of 

reticulocytes in the circulation is very low—0.5-2.5% of the mature RBC population 

(Kumar, 2015).  Conversely, in individuals who have hemolytic states (e.g., hemolytic 

anemias) the presence of reticulocytes in the circulation may increase above normal to 
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compensate for the inefficiencies in red cell production.  Over the course of their 

maturation, reticulocytes will undergo various processes to assume their mature state: 

membrane remodeling, organelle clearance, a decline in hemoglobin synthesis until its full 

hemoglobin complement is reached, changes in metabolic protein expression and finally 

the focus of this thesis: exosome release of cell membrane protein receptors (Ney, 2001; 

Riley, 2001). 

2.3 Reticulocyte-derived Exosomes 

As reticulocytes mature into erythrocytes they package and secrete intracellular 

components that they no longer need in their mature state into exosomes (Pan, 1983; 

Harding, 1983; Pan, 1985; Wagner, 1986; Johnstone, 1987; Johnstone, 1991; Blanc, 2005; 

Johnstone, 2006; Vidal, 2010; Carayon, 2011).  Exosomes are vesicles 30-100nm in 

diameter that originate from multivesicular bodies formed in the reticulocyte’s endosomal 

system.  Multivesicular bodies in the cell’s endosomal system contain individual exosomes 

and fuse with the plasma membrane of the cell to initiate exocytosis, after which the 

exosomes are released into the extracellular space or in more recent years, found to be 

internalized by neighboring cells in a form of intercellular communication (Figure 3). 
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Figure 3 – Multivesicular body origin of exosomes prior to release from a donor cell 

and internalization by a recipient cell. Adapted from Stoorvogel, 2012, page 646. 

  Early electron microscopic evidence of exosome release during reticulocyte 

maturation was reported in the 1980s and serves as the current understanding of exosome 

biogenesis and release (Pan, 1985; Stoorvogel, 2012).  Johnstone et al. found that the 

exosomes released from sheep reticulocyte culture medium had features characteristic of 

reticulocytes but absent in erythrocytes, such as transferrin receptor and membrane proteins 

such as CD55 and CD59 (Johnstone, 1987; Denzer 2000).  Figure 4 shows some of the 

early western blots showing that reticulocytes package the transferrin receptor (94kDa) into 

exosomes while mature RBCs do not express the protein (Johnstone, 1987).   Exosomes 

are considered critical to transferrin receptor clearance and erythropoiesis in general, 

because the transferrin receptor was also shown to not be cleared via the lysosomal 

pathway in reticulocytes.  In the case of pathologies whether these exosomes contain other 

materials is the basis for this thesis, particularly in sickle cell disease whose pathology 

originates with the red blood cell and its precursors. 
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Figure 4 – Early evidence showing that reticulocytes package transferrin receptor 

(94kDa) into exosomes.  Legend: V = vesicles (exosomes), M = mature RBCs, R = 

sheep reticulocytes.  Protein compositions of the plasma membranes of the mature 

RBCs and reticulocytes are shown, total protein composition in the exosomes shown.  

Adapted from Johnstone, 1987, page 9414. 

Of particular relevance to sickle cell disease is the increased expression of the α4β1 

integrin on the membranes of exosomes derived from healthy reticulocytes (Rieu, 2000).  

The α4β1 integrin is expressed on white blood cells (lymphocytes and monocytes), 

erythroid progenitor cells, and reticulocytes, but not mature erythrocytes.  Moreover, the 

ligand for α4β1 is vascular cell adhesion molecule (VCAM-1), which promotes leukocyte 

binding to endothelial cells (Gee, 1995; Styles, 1997).  Therefore, the expression of the 

α4β1 integrin on exosomal membranes suggests two major conclusions: 1) healthy 

reticulocytes use exosomes to clear the α4β1 integrin from their cell membranes to avoid 

adverse cell adhesion events and 2) these exosomes could bind to VCAM-1 on endothelial 

cell surfaces (Rieu, 2000; Denzer, 2000).  Sickle reticulocytes have been shown to have 

increased expression of α4β1; they have also been shown to bind to VCAM-1 via the α4β1 

integrin, and therefore endothelial cells, more than mature sickle erythrocytes, which is 
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why they are thought to initiate vaso-occlusion in the vasculature (Barabino, 1987; 

Joneckis, 1993; Swerlick, 1993; Gee, 1995; Styles, 1997).   Therefore, the expression of 

the α4β1 integrin on reticulocyte-derived exosomes could further enhance reticulocyte and 

endothelial cell interactions by enabling more specific binding of reticulocyte-derived 

exosomes to the target endothelium or may be a factor in the maturation of reticulocytes 

when they are in circulation.  The ultimate role that could play in SCD, or whether it could 

be exacerbated in some way, is unclear.  An initial step could be investigating the 

expression of the α4β1 integrin on sickle reticulocyte-derived exosomes relative to healthy.   

2.4 Human Reticulocyte Isolation and Enrichment Approaches 

Understanding the biological action of reticulocytes once they enter the circulation 

prior to developing into erythrocytes is of considerable interest for links to pathologies 

where a source of dysfunction may be interactions between RBCs and the vasculature.  In 

sickle cell disease, as mentioned above, chronic hemolysis may lead to the increased 

presence of reticulocytes in the bloodstream.  This suggests a change in the barrier function 

of the bone marrow endothelium since more reticulocytes are exiting than normal.  In 

addition to their net increase in concentration in the plasma, reticulocytes have been 

implicated in initiating occlusion in the microvasculature of individuals with sickle cell 

disease (Barabino, 2010).  Therefore, elucidating a new mechanism like exosome-mediated 

reticulocyte initiation of vaso-occlusion presents a new paradigm for study as well as 

opportunity for much needed drug modulation.  However, first establishing a systematic 

and reliable approach for the isolation of peripheral reticulocyte-derived exosomes and 

their contents is first necessary. 
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2.4.1 Density-dependent Approaches 

Often, the density differences between reticulocytes, mature RBCs, and leukocytes 

can be useful to separate the cells.  While healthy reticulocytes have a density of 1.084-

1.087 g/mL, their mature counterparts have densities greater than 1.087 g/mL and up to 1.1 

g/mL (Lew, 2005).  Different density gradient media with tunable densities can be used to 

separate blood components; however, traditionally Percoll, Ficoll, and Histopaque have 

been used.  Percoll, which is a low viscosity fluid containing nano-sized silica particles, 

can be diluted to a range of densities in isotonic solutions like PBS or NaCl to separate 

blood components along a specific gradient.  70% Percoll, having a density of 1.09 g/mL, 

has been used to separate reticulocytes from the red cell fraction (Russell, 2011; Noulin, 

2014; Kumar, 2015).  Similarly, these density gradient media can be used to remove 

leukocytes when red cells are the desired cell type for investigation.  Ficoll and Histopaque, 

both polysaccharide-based solutions, are typically used to enrich peripheral blood 

mononuclear cells from whole blood and have been shown to deplete blood of leukocytes 

en route to reticulocyte enrichment (Chen, 2008).   However, because the density of 

commercially available Ficoll and Histopaque is 1.077-1.078 g/mL, the separation of 

reticulocytes from whole blood prior to any leukocyte removal can be challenging because 

granulocytes will also be enriched with the reticulocyte population; e.g., the density of 

neutrophil, the most abundant granulocyte, is greater than 1.08 g/mL (Zucker 1969).   

Recently, aqueous multiphase polymers have also been introduced as a tool for reticulocyte 

isolation from peripheral blood (Kumar, 2015).  The two-phase hypertonic system is made 

by layering of equal weight-by-volume percentages of dextran and Ficoll, so also 

polysaccharide-based, and reticulocytes can be enriched from leukocyte-depleted blood 
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with centrifugation after layering it over the multiphase system.  The challenge of adapting 

this approach would be around the synthesis of these multiphase polymers in labs that do 

not have that particular expertise. 

The major advantage to using density gradient media is that these solutions are 

nontoxic to cells, easy to dilute and tune their densities, and highly stable (e.g., Percoll is 

stable from 4ºC up to room temperature), and easy to remove from the solution once the 

desired cells are collected.  Moreover, once sample preparation is well thought-out, the 

execution of these separation steps only requires mastering the gentle layering blood on 

top of the gradient and a standard benchtop centrifuge with a swinging bucket rotor.  The 

total time of the centrifugation runs, depending on the number of runs and sample 

preparation step needed can however, make the process very time- and labor-intensive. 

2.4.2 Immunomagnetic Approaches 

Immunomagnetic approaches allow investigators to target specific membrane 

markers on the reticulocyte surface.  The traditional marker is CD71, which is the 

transferrin receptor (Brun, 1990).  While reticulocytes mature in the circulation, the 

transferrin receptor transports iron into the maturing cell to aid in hemoglobin synthesis.  

As the reticulocyte reaches it full haemoglobin complement, it no longer needs the 

transferrin receptor and exocytoses it via exosomes (Pan, 1983; Riley, 2001).  Thus, mature 

RBCS do not express CD71 on their membranes and this distinct expression profile 

between reticulocytes and mature RBCs can be used to separate the cells from blood (Brun, 

1990; Chen, 2008; Malleret, 2015; Cho, 2016).  Similarly with density-dependent 

approaches, an initial leukocyte depletion step is needed because circulating leukocytes 
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also express CD71 (Ponka, 1999).  Leukocyte removal can be done with another marker 

for leukocytes to exclude those cells (e.g., CD45 by Chen et al. in 2008) or with a filtration 

step using cellulose columns for example (Russell, 2011; Noulin, 2014; Cho, 2016). 

The high specificity for the CD71 marker, among others, makes immunomagnetic 

approaches very attractive.  Particularly, in automated separator like the AutoMACs cell 

separator manufactured by Miltenyi, these separations can be done in under five minutes.  

However, magnetic beads can be pricey and often most applications for blood separation 

would require a considerable number of beads without any pre-purification steps.  For 

example, 1mL of blood contains on average contains 4-6 billion red blood cells alone.  The 

capacity for the autoMACs cell separator is up to 109 cells per run.  If one collects a 5mL 

sample, then a pre-processing step would be necessary to bring down the total number of 

cells due to the machine’s upper cell limit and to increase the yield of the targeted cell, in 

this case the reticulocyte.  Moreover, a pre-purification step is even more crucial for healthy 

samples, in which reticulocytes are only 0.5-2.5% of the mature RBC population.  Given 

the costs associated with this approach, maximizing the potential for usable yields of 

reticulocytes is very important.  Of course, the alternative is sacrificing some percentage 

of the sample in order to limit the amount of magnetic beads used in individual runs. 

2.4.3 Stem Cell Approaches 

A consideration in studies investigating reticulocyte maturation is the stage of 

maturation of isolated peripheral reticulocytes and how relevant in vitro analysis of their 

macromolecule content would be if they have already exited the bone marrow.  To address 

this concern, investigators often turn to CD34+ cells from the peripheral blood which can 
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then be cultured in vitro until enucleation.  Of note is that CD71+ (transferrin receptor-

expressing) cells isolated from the peripheral blood are considered “young” reticulocytes 

(Skadberg, 2003).  Starting with a progenitor cell less mature than the peripheral 

reticulocyte may be more applicable hypotheses about reticulocyte maturation, and 

erythropoiesis in general. 

CD34 is a glycoprotein expressed on hematopoietic progenitor cells and these cells 

can be directed towards terminal erythroid differentiation and mature into enucleated cells 

(reticulocytes & erythrocytes) after culture in vitro (Douay, 2009; Sangokoya, 2010; 

Griffiths 2012, Blood; Hu, 2013).   Moreover, these cells have been shown to be viable in 

vivo (Giarratana, 2011).  Griffiths et al. have shown the differentiation timing for CD34+ 

cells in vitro as they mature into erythrocytes (Figure 5).  Figure 5 shows that over the 

course of a 20-day culture period the percentage of reticulocytes increases slowly after 

days 10-11.  After day 20 a leukocyte filter was used to separate the more mature 

reticulocytes (closer in phenotype to erythrocytes) from the rest of the cells in cultures 

(Griffiths, 2012, Blood).  Leukocyte filters take advantage of the negative surface charges 

on leukocytes and mature reticulocytes/erythrocytes by promoting the adhesion of those 

cells to the filter material (Sharma, 2010).  The overall advantage of this method is the 

enhanced control of cell maturation.  However, cell yields, the technical difficulty in stem 

cell differentiation and long-term cultures, and the expense of differentiation medium can 

make this approach particularly challenging. 
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Figure 5 – Percentages of erythroid precursors during 20-day in vitro erythroid 

differentiation culture.  The percentage of reticulocytes (orange circle) increases 

slowly after days 10-11 and by day 20 is the most abundant cell type signaling the 

shift of the system towards terminal erythoid differentiation.  Adapted from 

Griffiths, 2012, Blood, page 6298. 

2.4.4 Final Summary of Reticulocyte Isolation Approaches 

Table 2 summarizes the approaches detailed above.  It is worth noting that these 

approaches can be combined, as in presented in this thesis (Chapter 3).  No one approach 

is necessarily better than the others, but the factors listed into the table should be considered 

when determining the best direction.  As far as innovation in this area, there exists need for 

newer techniques for the isolation of reticulocytes from peripheral or other blood sources.  

In the age of labs on a chip and microfluidic devices, whether these approaches could be 

scaled to that size is an interesting possibility, especially considering the engineering 

design that would be necessary.  However, the wide access and availability of a standard, 

even if laborious, approach is the first step towards driving that innovation because 

innovators always need some starting point (of unmet need) from which to draw 

inspiration.   
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Table 2 – Summary of major reticulocyte isolation approaches. 

Approach Pros Cons 

Density-

dependent 

Cheap 

No specialized equipment 

Time- and labor-intensive 

Possible mixing of non-target cells 

Require leukocyte depletion step 

Immunomagnetic 
High specificity  

If automated: very fast 

Relatively expensive 

Requires specialized equipment 

Requires pre-purification steps to 

minimize bead volume 

Stem cell Granular analysis of cells 

during maturation 

Long-term cultures 

Variability in differentiation profiles 

Availability of stem cells 

2.4.5 Reticulocyte Isolation Approach Chosen to Begin Execution of Aims 

Table 3 shows select reticulocyte isolation or enrichment approaches that were 

evaluated prior to the choosing of an approach for the execution of this thesis’ aims.   

Table 3 – Evaluation of select reticulocyte isolation approaches. DD = density-

dependent, I = immunomagnetic. 

Author Blood Source Isolation Method (DD, I) Additional information 

Russell, 2011 Cord 
DD (Percoll); from red cell 

fraction 
Enrichment of cells 

Miltenyi rep, 

2013 
Peripheral 

DD (Histopaque); from 

PBMC fraction 
PBMCs in cell mixture 

Kumar, 2015 Peripheral DD (multiphase polymers) 
Requires synthesis of 

polymers 

Cho, 2016 Cord I; from red cell fraction 
Reagant (magnetic bead) 

volume not reported 

Other 

Human or 

animal; cord 

or peripheral 

DD and/or I 

Sample and reagent 

volumes, cell yields 

often not reported 
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The approaches were evaluated according to the following criteria: 1) level of 

straightforwardness, 2) financial expense, 3) level of detail in published article’s 

methodology, and 4) level of adaptability.   These criteria were not weighted.  The “Other” 

category captures other references that are not specified in the table, but read during a 

survey of the literature (Johnstone, 1987, sheep; Rieu, 2000, rats and non-leukocyte-

depleted human blood, Koury, 2005, mice; Blanc, 2007, rats; Chen, 2008, packed human 

erythrocyte pellet; Blanc, 2009, mice; Barrès, 2010, rats; Liu, 2010, mice; Martin-Jualar, 

2011, mice and non-leukocyte-depleted blood; Noulin, 2014, stem cells; Malleret, 2015, 

25µL cord blood).  Generally, these approaches entailed the use of either animal or human 

peripheral or cord blood with varying permutations of the major isolation approaches.  

Cord blood, since it has a higher percentage of reticulocytes than peripheral blood, is also 

considered a better source for reticulocytes for malaria parasite invasion studies (Moreno-

Pérez, 2013).  Furthermore, neither sample and reagent volumes nor cell yields were 

reported in a way that made the adaptability of these methodologies possible.  This speaks 

to the need in the literature for a very detailed and graphically-supported approach for 

reticulocyte isolation from peripheral blood, one that once mastered can spur further 

innovation.  The Miltenyi representative field is anecdotal.  Consultation with a sales 

representative from the manufacturer of the automated immunomagnetic cell separator 

resulted in the exchange of a protocol for the isolation of CD71+ cells using Histopaque.  

However, the challenge faced with that protocol was the inclusion of peripheral blood 

mononuclear cells, specifically granulocytes, in the reticulocyte-enriched mixture.  The 

presence of these cells was not desirable because of their potential to release exosomes 

(Hunter, 2008). 
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When the four criteria were considered, the Russell, 2011 methodology was selected 

primarily because of its more detailed and adaptable methodology.  Additionally, since the 

technique is density-dependent no special equipment was required.  The use of cord blood 

in that study did not cause any concern because the density difference between the 

reticulocytes and the mature RBCs was not expected to be different based on the blood 

source.  Moreover, peripheral blood was more available for the execution of this project 

while cord blood was not.  Conversely, the Kumar, 2015 approach, while novel, required 

the synthesis of the aqueous multiphase polymers, an expertise not currently in-house.  The 

CD71 magnetic bead volume used was not specified in the Cho, 2016 approach which is 

critical given the expense of the beads.  Additionally, their use of 1-2mL of cord blood may 

have been sufficient given the low reticulocyte level in that blood source; their reticulocyte 

yield was not reported.  However; that volume from peripheral blood may not have resulted 

in desirable yields of reticulocytes for the purposes of this thesis and the retrieval of 

exosomes. 

2.5 Exosomal Communication via Macromolecules: A Spotlight on MiRNAs 

Mature microRNAS (miRNAs) are small, approximately 20 nucleotide-long 

molecules that are involved in the regulation of protein expression in cells (Davidson, 

2011).  miRNAs can act to repress the start of translation by inhibiting ribosomal traversing 

of messenger RNA (mRNA) transcripts.  MiRNAs can also act to degrade their target 

mRNAs by initiating the shuttling of the mRNAs to intercellular processing bodies where 

mRNAs are either stored or degraded.  Through either mechanism, the net result is reduced 

translation of the target mRNA transcript and thus, protein expression.  The role of 

miRNAs in cardiovascular diseases, including SCD, is still being uncovered (Latronico, 
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2007; Small, 2011; Hata, 2013).  MiRNAs serve as a new paradigm within which to 

approach investigation into pathologies like sickle cell disease because of the diverse 

functional effects they can have on protein expression and whether those effects are 

aberrant in the disease state. 

Chen et al. have shown that the expression of specific miRNAs in sickle erythrocytes 

is markedly different than in healthy ones (Chen, 2008).  Figure 6 shows that healthy, but 

not sickle, reticulocytes and erythrocytes have different miRNA expression profiles, which 

implies that the different miRNAs expressed may impose different functional effects on 

the reticulocytes, RBCs, and even cells in their extracellular environments.  Whether there 

are differences in miRNA expression profiles between sickle and healthy reticulocytes and 

their functional effects is unknown. 

 

Figure 6 – MiRNA profiles differ in sickle and healthy erythrocytes. miR-144 is 

expressed more in sickle erythrocytes than in healthy erythrocytes. Adapted from 

Chen, 2008, page e2360. 
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Chen et al. also demonstrated that miR-144, miR-29a, miR-451, and miR-140 are 

expressed more in sickle erythrocytes than in healthy erythrocytes.  A small focal point of 

this thesis is miR-144, which is an erythroid lineage-specific miRNA (Bonauer, 2010; 

Latronico, 2007).  MiR-144 has been implicated in controlling erythroid cell development 

and homeostasis and its allele has been demonstrated to be a reliable marker for erythroid 

differentiation tracking in vivo (Rasmussen, 2010; Rasmussen, 2011). MiR-144 levels in 

sickle reticulocytes have been correlated positively to the severity of anemia in sickle 

patients as measured by patient hematocrits and plasma hemoglobin counts (Sangokoya, 

2010).  This evidence makes it a suitable focal miRNA. 

  Additionally, cells can “communicate” with each other via their miRNA-containing 

exosomes in vitro (Valadi, 2007; Zhang, 2010; Kosaka, 2010; Ramachandran, 2011; 

Stoorvogel, 2012; Hergenreider, 2012). Generally, in this scenario an exosome-donating 

cell secretes and directs its exosome to a recipient cell, where the miRNAs packaged in the 

exosomes exert functional effects on the recipient cell (Figure 3).  Given that reticulocytes 

have been observed to exocytose different intercellular components that are not required 

by the mature red blood cell via exosomes, there is the possibility that within these 

exosomes are miRNAs that serve as intercellular signaling molecules.  This suggests a 

more defined functional role for exosomes beyond the selective packaging of intracellular 

materials reticulocytes do not need as they are maturing.  In SCD, the role of miRNAs in 

reticulocyte maturation and exosomal release has not been investigated extensively beyond 

the differential expression profiles in sickle erythrocytes and their precursors and the 

effects of specific miRNAs on oxidative stress capacity (Chen, 2008; Sangokoya, 2010).    
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CHAPTER 3. THE ISOLATION OF HUMAN RETICULOCYTES 

FROM PERIPHERAL BLOOD 

3.1 Introduction 

Reticulocytes in peripheral blood are a heterogeneous population of cells that differ 

based on the stage of their maturation into erythrocytes.  Figure 7 shows the range of 

densities and hemoglobin levels along which both healthy and sickle red blood cells exist 

in humans.  Reticulocytes, with greater cell volume and lesser hemoglobin content than 

mature RBCs, have lower densities with an average value of 1.084-1.087 g/cm3 for normal 

reticulocytes.  As Figure 7 shows, sickle reticulocytes can have densities less than 1.06 

g/cm3.  Separating RBC populations according to this granular density difference is ideal 

in cases when reticulocytes are needed for investigation.  For the reticulocyte isolation 

method reported in this chapter 70% Percoll, the density of which is equal to 1.09 g/cm3, 

was used to enrich reticulocytes from leukocyte- and platelet-depleted blood (Russell, 

2011).   

 

Figure 7 – Density and hemoglobin profiles for normal and sickle RBCs. Adapted 

from Lew, 2005, Physical Reviews, page 182. 
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Similarly, taking advantage of the differential expression of protein markers on the 

surfaces of mature RBCs and their precursors with antibody-based products is also a useful 

technique for enriching or purifying specific subpopulations of cells out of a larger 

population.  CD71, the transferrin receptor is a membrane protein critical for iron transport 

in maturing RBCs and its expression level on the cells is an indication of red blood cell 

maturation (Skadberg, 2003).  CD71 is a iron transporter that shuttles the metal into 

maturing red blood cells to support hemoglobin production.  As reticulocytes mature, their 

membrane CD71 expression decreases, indicating the cells have reached the maximum 

hemoglobin content needed for their lifespan.  Therefore, mature RBCs do not express 

CD71 (Sieff, 1982; Skadberg, 2003). 

For this thesis, achieving a reproducible approach for isolating reticulocytes from 

peripheral blood was necessary despite the blood source’s low reticulocyte count.  The 

reported method drew from a previous approach (Russell, 2011) for reticulocyte 

enrichment from cord blood was performed, now with the use of peripheral blood.  This 

method utilizes both density-dependent (Percoll) and immunomagnetic (CD71 positive 

selection) approaches, generally described in Chapter 2.  Validation of the separation was 

performed with flow cytometry and cytological staining detection of RNA because 

reticulocytes also package RNA into granules to complete protein production without a 

nucleus while maturing in the circulation (Griffiths, 2012, Autophagy).  This chapter will 

demonstrate a stepwise progression of the established approach, while providing a detailed 

methodology.  As no standardized protocol exists for the isolation of human peripheral 

reticulocytes from whole blood, the steps described here will fill that gap in knowledge.  A 
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chart of the separation process is shown in Figure 8, the images and the steps of which are 

detailed in the Materials and Methods section. 

 

Figure 8 – CD71+ cells can be isolated from peripheral blood using density-

dependent and immunomagnetic approaches.  (A) The workflow.  The box with a 

dashed outline indicates the 70% Percoll density-dependent separation step, while 

the box with a solid outline indicates the immunomagnetic separation step. 

3.2 Materials and Methods 

3.2.1 Blood Sample Collection 

Human whole blood (10mL) from healthy adult African-American donors was 

purchased from an institutional IRB-approved commercial vendor, Research Blood 
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Components (Boston, MA). The 10mL blood samples were collected over EDTA and 

guaranteed to be syphilis–, HTLV–, HIV–, HepB–, and HepC–.  Reticulocytes were 

isolated from all samples within twenty fours of being collected. 

3.2.2 Cellulose Column Preparation  

Cellulose columns (Figure 9) were used to deplete white blood cells and platelets 

from peripheral red blood cells (Venkatesan, 2012).  First, two 1 cm2 squares of lens paper 

(Whatman) were laid flat to cover the tip of a 10mL Luer-Lok syringe (BD).  The syringes 

were then packed with 5.7 mL of cellulose powder (Sigma-Aldrich) and stored at room 

temperature prior to use. 

 

Figure 9 – Cellulose column used to deplete leukocytes and platelets from blood.  

10mL syringes were packed with 5.7mL cellulose on the day prior to reticulocyte 

isolation. 
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3.2.3 70% Isotonic Percoll Solution Preparation  

“100%” Percoll was prepared by adding nine parts cell-culture tested Percoll 

(Sigma-Aldrich) to one part 10X PBS.  70% isotonic Percoll was then prepared by diluting 

the “100%” Percoll with 1X PBS (Frank, 2006).  The density of the 70% Percoll solution 

was approximately 1.09 g/mL based on the manufacturer’s specifications for density 

calculations and the diluents used.  The solution was brought to room temperature prior to 

use.  

3.2.4 Enrichment of Reticulocytes from Blood With 70% Percoll  

Centrifugation for ten minutes at 1000g was first used to remove plasma from the 

blood samples.  After plasma removal, the packed cells were diluted to twice the original 

blood volume in 1X PBS. White blood cells and platelets were depleted from the peripheral 

red blood cells using the cellulose columns described above (Figure 10).   

 

Figure 10 – Blood undergoing leukocyte and platelet depletion in cellulose columns. 
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The columns were first hydrated with 6mL 1X PBS, then loaded with 5mL of the 

diluted blood. After the blood passed through the columns, 5mL 1X PBS was added to 

wash the columns.  After the wash, the leukocyte- and platelet-depleted blood was 

centrifuged for 10 minutes at 1000g and the total volume of the sample brought to 10mL.  

5mL aliquots were then gently overlaid on 6mL 70% Percoll layers in 15mL conical tubes 

using the gravity mode dispense setting on a motorized pipettor (Figure 11).  All 

centrifugation runs in this stage were done at room temperature in a swinging bucket rotor 

and without brakes. 

 

Figure 11 – Demonstration of layering blood over 70% Percoll cushion without any 

mixing or disruption of the interface (6mL mark on tube) between the two media. 

3.2.5 Immunomagnetic Selection of CD71+ Cells from Percoll-Separated Blood  

Three distinct layers were observed above the Percoll cushion after 70% Percoll 

separation.  The bands were carefully removed using a micropipettor, pooled, and washed 
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in 1X PBS. Cells were pelleted by centrifugation for 10 minutes at 300g and 4°C. After the 

post-Percoll separation wash the cell pellet was resuspended in 1X PBS and the total 

number of cells quantified with the Countess II (Life Technologies) automated cell counter.   

The cells were then resuspended in 80µl autoMACS separation buffer (Miltenyi, 

1X PBS/0.5%BSA/2mM EDTA) per 107 cells and treated with 40µl of human CD71 

microbeads (Miltenyi) per 107 cells for 15 minutes at 4°C in the dark.  After the incubation 

time, the cells were washed with 1mL of separation buffer per 107 cells, centrifuged, and 

resuspended in 500µl of separation buffer. CD71+ cells were then isolated using the 

positive selection program on the autoMACS separator (Miltenyi). CD71- cells were also 

collected.  Both cell populations were resuspended in 1X PBS and stored at 4°C until 

further use.  All centrifugation runs in this stage were completed at 400g and 4°C for 5 

minutes in a swinging bucket rotor and with low deceleration, unless otherwise stated. 

3.2.6 Flow Cytometry for Acridine Orange-Bound RNA Detection 

To detect the RNA content in CD71+/- cells, 250,000-500,000 cells in each sample 

were incubated with 10µg acridine orange (ThermoFisher Scientific) for 30 minutes at 

room temperature. Fluorescence of acridine orange-bound RNA (10,000 events) using the 

LSR II 4 flow cytometer (BD Biosciences) was recorded immediately after incubation. A 

one-tailed, unequal variance, 97.5% confidence level student’s independent t-test was 

performed to compare the mean acridine orange fluorescence between the CD71+/- 

populations and to evaluate the effectiveness of the combined density-dependent and 

immunomagnetic separation steps.  Prior to running the t-test a 95% confidence level F-

test was used to test whether the variances of the populations were equal or unequal.  P-
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values less than 0.025 were considered indicative of a statistically significant result.  

Equation 1 shows the formula used to calculate the effect size (Cohen’s d) as another 

measure of the difference between the means.  

 
𝐶𝑜ℎ𝑒𝑛𝑠′𝑑 =  

|µ𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1 −  𝑢𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2|

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
 (1) 

To account for differing sample sizes, a pooled standard deviation was used in the 

calculation of effect size.  The formula for the pooled standard deviation is in Equation 2.  

All analyses were done in R or Excel. 

 

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 =  √
(𝑛1 − 1)𝑆𝐷1

2 + (𝑛2 − 1)𝑆𝐷2
2 

𝑛1 + 𝑛2 − 2
 (2) 

3.2.7 Brilliant Cresyl Blue RNA Staining 

250,000 CD71+/- cells were stained 1:1 with a 1:100 dilution of the live-cell RNA 

stain brilliant cresyl blue (EMD Millipore) for thirty minutes (Noulin, 2014).  After the 

addition of 300-400µl warm culture medium (see exosome isolation section), the solution 

was spun in the Cytospin cytocentrifuge (ThermoFisher Scientific) for three minutes at 

700rpm with low acceleration. Slides were air dried prior to imaging. 

3.3 Results & Discussion 

3.3.1 Detection of Three Discrete Bands Above the 70% Percoll Cushion 
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The image on the right of Figure 12 shows the first successful 70% Percoll 

separation that was performed with human peripheral blood with the Russell, 2011 

approach.  The image on the left side of Figure 12 shows the 70% Percoll separation result 

with cord blood that was reported by Russell et al. in 2011.  The two black arrows indicate 

what were thought to be the primary reticulocyte-containing band in each sample.  

However, when the peripheral blood separated sample was inspected more closely, there 

appeared to be more than one layer—actually three in total, with one above and below the 

primary band.  To determine whether the cells were reticulated, the uppermost two bands 

of the peripheral blood sample in Figure 12 were aspirated and stained with brilliant cresyl 

blue.  Similarly, the third layer was also stained to determine whether reticulated cells were 

present.  Reticulated cells were detected in all layers (Figure 13 and Figure 14). 

 

Figure 12 – Comparison of 70% Percoll separation results with cord (left, adapted 

from Russell, 2011, page e76) and peripheral (right) blood. 
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Figure 13 – Brilliant cresyl blue staining of uppermost two layers post-Percoll. Scale 

bars: 10µm. 

 

Figure 14 – Cells detected in the lowest band. Green arrow: reticulated cells; black 

arrow: larger cells; blue arrow: most mature cell. Scale bar: 10µm. 
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In Figure 14 reticulated cells detected in the lowest band are shown.  Three different 

cell morphologies are highlighted.  First, cells that had sparsely reticulated cytoplasms, 

those with interchanging areas of white and blue are highlighted with the green arrow.  

These are reticulocytes, akin to the cell shown in Stage 4 of Figure 2.  Cells with a region 

of central pallor (whiteness) are highlighted by the blue arrow.  These cells are likely newly 

mature RBCs and again akin to Stage 4 of Figure 2—or right after, although their density 

is below 1.09 g/mL. Finally, cells slightly larger than the others are indicated by the black 

arrow.  These may be cells that have yet to expel their organelles and undergo membrane 

organization as they become mature RBCs.  Taken together, these results led to the 

conclusion that three discrete layers were being observed after 70% Percoll separation of 

peripheral blood (Figure 15).  Given the density-dependent nature of this method, general 

properties of the individual layers were defined with respect to their relative densities and 

reticulocyte maturation (Lew, 2005).  Layer 1, the uppermost layer, is thought to contain 

the youngest (least dense) reticulocytes, the middle band relatively older reticulocytes, and 

the lowest band the densest cells—the oldest reticulocytes and newly mature erythrocytes.  

Further study on the individual layers could provide clarification. Additionally, only one 

reticulocyte-containing band was previously reported in similar approaches (Figure 12; 

Russell, 2011; Kumar, 2015). This could be due to the compositional differences of the 

cord blood that was used in one of the studies or to overall differences in technique.  No 

reports of three layers being observed were found in the literature, a result that was quite 

remarkable. 
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Figure 15 – Confirmation of three layers being detected. L = layer. 

3.3.2 CD71+ Immunomagnetic Separation of the Pooled Three Layers 

The three bands observed after Percoll isolation were pooled and underwent CD71+ 

immunomagnetic selection.  The mean number of CD71+ cells that were isolated from 

eleven 10mL samples of healthy peripheral blood was 2.47x106 ± 7.49x105 cells (Figure 

16). CD71+ cell yields varied across donors and may reflect their different steady-state 

peripheral reticulocyte levels, which were expected to be low since the donors were not 

anemic.  We did not observe any age or gender trends in the number of CD71+ cells 

isolated.  Table 4 summarizes this data as well as the ratio of CD71+ cells collected to the 

total number of cells that were collected after 70% Percoll separation.  The mean ratio was 

2.19% ± 0.412%.  This indicates that when combined with 70% Percoll enrichment of 

reticulocytes, CD71 immunomagnetic separation of the youngest reticulocytes (Skadberg, 

2003) further purifies the population.  However, the CD71- population, representing the 
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other ~98%, may be sufficient for some investigations because the density of these cells is 

still below 1.09 g/mL and in the range of commonly accepted reticulocyte densities (Lew, 

2005).  A possible deterrent to the use of this population would be the high total cell count, 

a value that would approach 100x106 cells.  The same applies with stopping at the 70% 

Percoll separation step and collecting the cells from the pooled layers (average of 106x106 

cells).  On the other hand, the concentration of beads used may set an upper limit on the 

number of CD71+ cells that can be collected from one sample.  This work’s treatment 

concentration of 40µl beads/107 cells may set an upper limit across the samples, and in fact 

some cells in the CD71- population could be unlabeled, yet CD71+ cells.  In any case, what 

is considered an acceptable number of CD71+ cells is left to the preferences of the 

individual researcher.  

 

Figure 16 – The number of CD71+ reticulocytes isolated varied across the healthy 

donors (n=11).  The number of CD71+ reticulocytes were quantified after 

immunomagnetic selection. A mean of 2.47x106 ± 7.49x105 CD71+ cells were isolated 

from the 10mL samples; 95% confidence interval: (1.0х106, 3.94х106).  The 

horizontal bar represents the mean cell number. 
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Table 4 – Summary of CD71+ yields per donor (n=11). 

Sample ID 
# of CD71+ 

cells (x106) 

# of cells post-

Percoll (x106) 
Ratio (%) 

KP48474 1.13 50.0 2.25 

KP48511 1.03 30.0 3.43 

KP48556 1.08 97.5 1.10 

KP48599 0.132 66.8 0.198 

KP48635 1.82 74.4 2.44 

KP48660 5.27 109 4.84 

KP48773 0.481 68.0 0.708 

KP48903 2.49 168 1.49 

KP48934 1.58 110 1.43 

KP49050 8.45 277 3.05 

KP49112 3.72 119 3.11 

Mean 2.47 106 2.19 

SEM 0.749 20.5 0.412 

3.3.3 Flow Cytometry Detection of RNA in CD71+/- Cells 

3.3.3.1  Acridine Orange Staining of CD71+ Cells 

Flow cytometry detection of acridine orange-stained RNA in CD71+ cells further 

detected the presence of RNA in these cells (Figure 17).  When acridine orange 

fluorescence in stained and unstained CD71+ cells were compared, a shift in the peak 

fluorescence between the two populations was evident when a gate was drawn from the 

right edge of the unstained histogram to the extent of the x-axis (Figure 17, third panel).  

The drawing of this gate in the analysis software was done manually.  Additionally, the 

forward scatter vs side scatter plots on a linear scale are shown in Figure 17.  Notice that 

acridine orange, at a treatment amount of 10µg, led to the reduced side scatter and increased 
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forward scatter of the stained CD71+ cells.  RNA granules (“particulates”) may contribute 

to reticulocyte granularity such that when the flow cytometer laser contacts the cell it may 

be bouncing off the RNA in the cell.  Acridine orange binding the RNA may then reduce 

the granularity if the RNA is complexed with the dye.  For the increase in forward scatter 

which is a proxy for cell size, the uptake of the acridine orange may lead to an increase in 

cell volume of the reticulocytes, which since they have few organelles and no nucleus, may 

have the acridine orange forming structures in their cytoplasms that lead to a slight increase 

in cell size (Jahanmehr, 1987).  Overall, these data indicate that RNA was detected in the 

acridine orange-treated CD71+ cells. 

 

Figure 17 – Flow cytometry detection of RNA in CD71+ cells using acridine orange. 

3.3.3.2 Comparing CD71+/- Stained Cells 

The motivation for comparing the stained CD71+/- cells was derived from analysis 

of the six unstained and stained CD71+ samples (Figure 18).  Notice that in the box labeled 

KP48599 that the percentage of CD71+ stained cells that were unique from the CD71+ 

unstained cells was 65.9%, a value lower than the other samples.  
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Figure 18 – The arbitrary drawing of gates in flow cytometry can be misleading. 

The 65.9% result is a product of the unstained cell population having greater 

acridine orange fluorescence than the other samples (perhaps due to less efficient 

separation), as well as there being a left tail on the stained population that is not visible on 

the other samples.  Additionally, since the gates are drawn arbitrarily from the left edge of 

the unstained histogram, there is considerable overlap between the two curves.  Moreover, 

if the gate were redrawn to consider the behavior of the two curves an aberration (extend 

the curve more to the left), then the percentage of unique stained cells would change quite 

distinctly.  The primary issue with that mode of analysis is the lack of statistical rigor to 

apply cutoff points and the arbitrary nature in which gates are drawn, particularly when 

there can be overlap between curves. 

In an effort to apply statistics and compare more than just the unstained and stained 

CD71+ populations, the acridine orange fluorescence in stained CD71+ populations was 

compared to acridine orange fluorescence in the corresponding stained CD71- populations 
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(n=6).  This accomplished two things: 1) it evaluated the separation efficiency of the CD71 

immunomagnetic separation step and 2) it introduced another independent population for 

comparison with the CD71+ stained cells.  Point number two makes for a more interesting 

result because the data in the previous section just conveyed that the acridine orange was 

complexing with RNA in the CD71+ cell population.  With this analysis, a difference in 

acridine orange binding between the two populations on the basis of CD71 expression can 

be shown.  When acridine orange fluorescence in CD71+/- cells stained with the dye were 

compared, a shift in the peak fluorescence between CD71+/- cells was evident and Figure 

19 shows a representative plot of this shift between the two populations’ distinct acridine 

orange fluorescence levels.  Future analysis of CD71high/low expression as a function of 

RNA content is also possible to further stratify the CD71+ cell population. 

 

Figure 19 – Representative image comparing acridine orange fluorescence (x axis) 

in stained CD71+/- cells.  Also a graphical one-tailed, 97.5% confidence level t-test. 

Further statistical analysis was completed to determine the significance of the shift 

in mean acridine orange fluorescence shown in Figure 19.  A 2.5% cutoff was imposed on 

the right tail of acridine orange fluorescence for the acridine orange-stained CD71- 

population to perform a 97.5% confidence level t-test on the difference between the mean 

acridine orange fluorescence for the CD71+/- populations.  The mean acridine orange 
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fluorescence for six stained CD71+ and CD71- samples was computed and a one-tailed, 

unequal variance independent t-test ran to compare the means (p < .025).  These data 

indicate that the two populations were distinct based on their acridine orange fluorescence.  

In Figure 19, 97.3% of the CD71+ cells fall within the 2.5% cutoff region, indicating an 

efficient separation of the CD71+ cells from the corresponding CD71- cells from this donor.  

A hypothetical normal distribution curve is drawn on the CD71- curve to illustrate the t-

test in action.  Table 5 shows the mean acridine orange fluorescence for the stained CD71+/- 

populations from each donor.  The fluorescence values are expressed in arbitrary units 

indicating the magnitude of the fluorescence.  Notice that the aberrant sample from Figure 

18 (KP48599) does not deviate as much from the other samples with these measures. 

Table 5 – Mean acridine orange (AO) fluorescence for stained CD71+/- cells. 

Stained CD71- cells had nearly four times less acridine orange fluorescence than 

the CD71+ cells on average.  The p-value returned by the one-tailed t-test and the effect 

Sample CD71
-
 cell mean AO 

fluorescence 

CD71
+
 cell mean AO 

fluorescence 

Cells in 2.5% cutoff 

region (%) 

KP48474 235 652 76.5 

KP48511 190 1016 97.3 

KP48556 57.3 757 99.9 

KP48599 62.4 408 85.2 

KP48635 300 935 83.0 

KP48660 362 1425 87.9 

Mean 201.1 865.5 88.3 

SEM 50.6 142.3 3.62 

Effect size (Cohen’s d) 2.54 p value (α = .025) 0.0021 



 43 

size measuring the distance between the population means as a fraction of the pooled 

standard deviation also indicate the significance of the difference between the two 

population means.  An average of 88.3% ± 3.62% of the CD71+ cells fell within the right 

2.5% cutoff region of the CD71- population.  Achieving close to 90% of the CD71+ 

population being distinct from the corresponding CD71- population was quite remarkable.  

The R code used to perform all the F- (for homoscedasticity) and t-tests is shown in Figure 

20.  The lines are commented for clarity.  Taken together, these data confirm the presence 

of RNA in CD71+ cells. 

 

Figure 20 – R code to perform statistical tests. 

3.3.4 Brilliant Cresyl Blue Detection of RNA in CD71+ Cells 

Brilliant cresyl blue staining of CD71+/- cells after CD71 immunomagnetic 

separation detected RNA granules in the CD71+ cells (Figure 21).  The cells, indicated by 

the black arrows, have a noticeable reticulum akin to Stage 3 in Figure 2.  Cells in the 

corresponding CD71- cell samples did not contain these RNA granules (Figure 22).   
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Figure 21 – Reticulated cells detected in CD71+ cell samples. Scale bar: 10µm. 

 

Figure 22 – Reticulated cells were not detected in the majority of the CD71- cell 

samples. Scale bar: 10µm. 
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 In a scan of the CD71- population slides, reticulated cells similar to the cell in Stage 

4 of Figure 2 were detected (Figure 23).  These cells likely accounted for the acridine 

orange fluorescence detected in stained CD71- cells (Figure 19).  This result suggests that 

there may be a continuum of CD71 expression and RNA content along which reticulocyte 

maturation occurs.  In this case, the CD71- cells still have detectable levels of RNA, but 

may not have a high enough level of CD71 to be detected.  By one measure they can be 

classified as reticulocytes, but not by the other.  There is also the possibility that the 

magnetic bead concentration used may not be high enough to capture all the CD71+ cells 

in the post-Percoll separation sample.  However, given the expense of the magnetic beads 

raising the concentration may not be feasible with the financials constraints of individual 

laboratories.  Ultimately, immunomagnetic separation is not expected to result in complete 

isolation of all reticulocytes, presuming that the ones detected in Figure 23 still have some 

undetectable level of CD71.  Moreover, the yield of nearly 90% distinct CD71+ cells 

following immunomagnetic separation was an acceptable result for the purposes of this 

thesis. 

 

Figure 23 – Reticulated cells detected in a CD71- cell sample. Scale bar: 10µm. 
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3.4 Aim 1 Summary 

In this aim a detailed and visual method for the isolation of CD71+ reticulcoytes from 

human peripheral blood was demonstrated.  Rather than isolating from cord blood, which 

is not always available, the challenge of isolating these cells from what is considered a poor 

reticulocyte source (Moreno-Pérez, 2013) was undertaken. Through the combination of 

both density-dependent and immunomagnetic separation steps, an average of 2.47x106 ± 

7.49x105 CD71+ cells were isolated.  While this yield is low relative to the trillions of cells 

in a 10mL whole blood sample, many assays can be performed with that quantity.  

Moreover, for disease samples in which steady-state peripheral reticulocyte levels can 

approach 10% of the total RBC count in the circulation like sickle cell disease (Lopez, 

1996), higher yields would be expected. 

Further study of the properties of the three bands observed after 70% Percoll 

separation is necessary to understand the functional differences that may exist between the 

layers, particularly as it relates to reticulocyte age and maturation.  Extending these studies 

to disease samples (e.g., sickle cell, malaria, diabetes) would provide further insight into 

the specific densities or ages of reticulocytes that contribute (or do not) to specific 

pathologies.   

Opportunities for innovation of the method also exist.  Leukocyte and platelet 

depletion with the cellulose columns is the longest step in our method because of the 

dependence on gravity for the downward movement of the blood through the column.  The 

introduction of an external pressure source or the engineering of a longer syringe barrel 

and plunger so that the sample and PBS washes can be passed through simultaneously 
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could reduce the time- and labor-intensiveness of the isolation procedure. The substitution 

of cellulose with a non-woven fabric filter may also reduce the duration of this step (Tao, 

2011).  The introduction of a solution would not only benefit this specific protocol, but 

more broadly fieldwork in which sample collection and processing cannot be done in 

traditional lab spaces.   

For situations where there may be financial constraints around the expense of beads 

for immunomagnetic selection, the cells collected after 70% Percoll separation may also 

be sufficient for the experimental question being investigated (Russell, 2011; Noulin, 

2014).  Similarly, given the history of this laboratory, performing any of these steps with 

the throughput of a microfluidic device is also an intriguing thought. 

  



 48 

CHAPTER 4. CD71+ CELL RELEASE OF EXOSOMES IN 

VITRO 

4.1 Introduction 

Exosomes are vesicles generally 30-100nm in size that cells have been to found to 

release constitutively (Théry, 2002).  First shown to be released by sheep reticulocytes in 

vitro (Pan, 1983) these nanometer-sized vesicles were thought to function in the developing 

red blood cell’s removal of unneeded proteins and other intracellular components.  

Exosomes originate in multivesicular endosomes within cells that direct their components 

to the plasma membrane and eventually the extracellular space, rather than the cell’s 

lysosomal pathway (Simons, 2009).  Figure 24 shows the currently understood pathway 

for exosome biogenesis in mammalian cells. 

 

Figure 24 – Multivesicular endosome origin of exosomes (spheres). Adapted from 

Théry, 2002, page 570. 
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The macromolecule cargo (in this case, the transferrin receptor) is first packaged into 

endosomes.  After some time, the receptor is complexed with individual exosomes in a 

larger multivesicular endosome.  Once packaging is complete the exosomes are shuttled to 

and fuse with the plasma membrane and are then released into the extracellular space.  

Exosomes are generated within a cell through what is termed reverse intracellular-budding 

events Figure 25. 

 

Figure 25 – Reverse budding of exosomes (on right).  Adapted from Théry, 2002, 

page 570. 

In a reverse budding event the cytosolic and extracellular orientation of the proteins 

in the cellular membrane is maintained in the exosomal membrane.  In Figure 25 the 

extracellular domain (colored blue) of the protein is maintained on the outside of the 

exosomal membrane (facing the luminal compartment of the mutilvesicular endosome).  

When the exosome fuses with the plasma membrane and is exocytose the same orientation 

is maintained.  Conversely, for normal intracellular-budding events, the cytosolic domain 
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(colored red) of the protein is moved to the outside of the transport vesicle.  Current 

research is underway to determine more fully the mechanisms of exosome budding and 

secretion. 

The reverse budding of exosomes intracellularly is important for their 

characterization with laboratory assays.  Moreover, exosomes can be characterized not only 

by their size, but also by the expression of proteins that link them back to their endosomal 

origin.  The expression of integrins and tetraspanins, heat shock proteins, and membrane 

transport proteins have been found to be relatively consistent across exosomes released by 

differing cell types (Théry, 2001; Théry, 2002; Simons, 2009).  Tetraspanins are 

membrane-bound proteins and CD63 is highly enriched in exosomal populations (Simons, 

2009).  It is through the reverse budding intracellularly in which the presence of CD63 on 

a cell’s membrane is maintained on an exosome’s membrane. 

Currently in sickle cell disease research much is known about red cell sickling, 

reticulocytosis, and red blood cell/reticulocyte adhesion to endothelial cells in the 

microvasculature (capillaries and post-capillary venules) (Rees, 2010; Barabino, 2010).  

However, there is still an overarching and critical need to develop therapies, which may 

require exploring new avenues.  One area that has concentrated research efforts is the 

investigation of the factors the precipitate the onset of vaso-occlusion—the most common 

manifestation of the disease—in the microvasculature.  The current understanding of vaso-

occlusion is that reticulocytes initiate the process by adhering to the mature sickle red blood 

cells as well as white blood cells in circulation.  Progressive blockage of blood flow follows 

(Barabino, 2010). 
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The clinical basis for this thesis takes what is known about cellular interactions in 

the sickle cell disease circulation and investigates the source of the pathology: the 

developing red blood cell, specifically the reticulocyte.  Since the 1980s reticulocytes have 

been shown to exocytose intracellular materials during their development (Johnstone, 

1987).  By demonstrating the release of CD71+ exosomes in vitro, this aim is a foundation 

for the study of the reticulocyte’s intracellular processes (e.g., exosomal miRNAs and other 

macromolecule content) and the intercellular effects they can have in the reticulocyte’s 

environment in the context of sickle cell.  This provides the pathway for future 

investigation into the functional roles of exosomes and serves as a new direction in 

reticulocyte, and by application sickle cell, research.  The availability of peripheral blood 

reticulocytes is especially tremendous for sickle studies because the procurement of cord 

blood reticulocytes is unlikely given the drawbacks to further segmenting the sickle patient 

population.  Finally, recapitulating the finding of reticulocyte exosomes release in vitro by 

peripheral reticulocytes is a homage to original work done in sheep (Pan, 1983) and rats 

(Harding, 1983), and also reflects how long timelines in research can be.  

To execute this aim exosomes were collected from the supernatant of CD71+ 

reticulocytes incubated in vitro for twenty-four hours.  Analysis of the exosomes by 

transmission electron microscopy, protein and RNA expression allowed greater 

characterization of the properties of these nanometer-sized vesicles and is a first step in 

further identifying their possible connection to pathologies. 

4.2 Materials & Methods 

4.2.1 Reticulocyte Culture Medium 
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CD71+ cells were incubated for 24 hours at 37°C in RPMI 1640 culture medium 

(Life Technologies) containing 10% v/v exosome-depleted FBS (Life Technologies), 2mM 

l-glutamine, 50 IU/ml penicillin (Corning/Mediatech), and 50ug/mL streptomycin 

(Corning/Mediatech).  The exosome-depleted FBS purchased commercially was verified 

by the manufacturer to have removed 90% of the bovine cell-derived exosomes (Figure 

26) and had no observable CD63 expression (Figure 27). 

 

Figure 26 – 90% exosome depletion from FBS. Adapted from Paszkiet, 2016. 

 

Figure 27 – No observable CD63 expression in exosome-depleted FBS (Panel 1). 

Adapted from Paszkiet, 2016. 
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4.2.2 Exosome Isolation 

Exosomes were then isolated from the reticulocyte conditioned medium using 

ultracentrifugation (Théry, 2001).  The cell culture supernatant was first centrifuged for 10 

minutes at 2000g to remove any dead cells followed by centrifugation at 10,000g for 30 

minutes to pellet cell debris. Exosomes were then pelleted during a 70 minute run at 

100,000g.  The exosome pellet was then resuspended in PBS to wash, and repelleted after 

another 70 minute 100,000g run. The exosome pellet was either resuspended in 100µL-

200µL PBS for long-term storage at -80°C or prepared for a terminal assay.  All 

centrifugation runs were performed at 4°C and speeds 10,000g or greater performed with 

the Beckman Coulter Optima™ MAX-XP Benchtop Ultracentrifuge, MLA-50 rotor, and 

OptiSeal polypropylene tubes.  K562 cells, which are often used a cell line comparison in 

reticulocyte studies (Lozzio, 1975; Ttsiftsoglou, 1991; Bruchova-Votavova, 2010; 

Sangokoya, 2010), were cultured in the same medium and exosomes isolated from cultures 

of 107 cells. 

4.2.3 Transmission Electron Microscopy 

Exosome pellets were resuspended in 25µl 0.2M sodium cacodylate buffer (pH 

7.4). 5µL of the sample was placed on Formvar 300 mesh copper grids (Ted Pella) and blot 

dried.  5µL 1% uranyl acetate was then delivered to the grid for a negative stain and blot 

dried. Samples were air dried prior to imaging at 30,000X-40,000X magnification on the 

JEOL- 2100 transmission electron microscope. 

4.2.4 Total Protein Quantification of Exosomes 
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10µL of CD71+ cell and K562-derived exosomes resuspended in 1X PBS were 

added to 40µL RIPA Buffer (ThermoFisher Scientific). 1X RIPA Buffer was prepared by 

supplementing 1mL RIPA with 10µL of the 100X Halt Phosphatase Inhibitor Cocktail 

(ThermoFisher Scientific), 10µL of the 100X Protease Inhibitor Cocktail (ThermoFisher 

Scientific), and 10µL of the 0.5M EDTA solution (ThermoFisher Scientific) to inhibit 

phosphatases, proteases, and metalloproteases, respectively.  The exosome-RIPA protein 

homogenate was then sonicated three times for fifteen seconds at 37ºC. 400µL 1X PBS 

was then added to the solution and the supernatant collected after centrifugation for five 

minutes at 13000g and room temperature.  The total protein concentration in the 

supernatant collected was then quantified with the microBCA assay (ThermoFisher 

Scientific) according to the manufacturer’s instructions.  The initial 1/45 dilution of the 

exosomal pellets was taken into account when calculating the total protein concentration 

in the samples. 

4.2.5 CD63 ExoELISA 

Exosomes were isolated from conditioned culture medium as described above. 5µg 

exosomal protein equivalent or 10µL of CD71+ cell and K562-derived exosomes were used 

to perform the ExoELISA-Ultra CD63 kit (System BioSciences). The ELISA was 

completed according to the manufacturer’s instructions.  Measurements were read at 

450nm on a spectrophotometer. 

4.2.6 MiR-144 qPCR 

Total RNA was isolated from K562 exosome and reticulocyte-enriched blood 

exosomes using Trizol LS (Life Technologies) according to the manufacturer’s directions.  



 55 

Total RNA was isolated from K562 cells using Trizol (Life Technologies) according to the 

manufacturer’s directions.  Trizol LS is better suited for liquid samples.  Trizol 

homogenates for exosomal samples were loaded with 250fmol of the cel-miR-39 spike-in 

control (Qiagen). cel-miR-39 is regularly used as a spike-in control since no consensus 

exists for a housekeeping gene for miRNA expression in exosomes and because there is no 

homologous mammalian gene (Kroh, 2010; Kosaka, 2011; Roberts, 2014,).  5µL of a 

15mg/mL solution of GlycoBlue coprecipitant (ThermoFisher Scientific) was added to the 

exosomal samples during the RNA precipitation step of total RNA isolation and the 

samples incubated overnight at 4ºC. Table 6 shows the target genes for the cellular and 

exosomal samples.  For all samples mature miR-144 was targeted.  For cellular samples, 

RNU6B, RNU48, RNU44, and hsa-miR-16 were used as housekeeping genes to normalize 

cellular miR-144 expression.  These genes have been shown to be stably expressed in K562 

cells (Applied Biosystems, 2010).  Their CT values were averaged and that average value 

used to normalize the cellular miR-144 expression for each sample.  As described above, 

cel-miR-39 was used to normalize miR-144 expression in the exosomal samples. 

 500ng total RNA was reverse transcribed using the TaqMan MicroRNA Reverse 

Transcription Kit (Life Technologies) according to the manufacturer’s instructions.  After 

reverse transcription, the cDNA was amplified with the target primers in a standard 40-

cycle quantitative polymerase chain reaction (qPCR) on the StepOne Plus (Applied 

Biosystems).  Samples were run in triplicate. The thermal cycling conditions were as 

follows: 1) Hold for 10 minutes at 95ºC, 2) 40 Cycles of 15-second denaturing at 95ºC and 

annealing/extending for 60 seconds at 60ºC.  TaqMan Universal PCR Master Mix (2X), no 

UNG (ThermoFisher Scientific) was used in the qPCR reaction mix.  Also, the reverse 
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transcription and PCR primers for the genes in Table 6 were obtained from their respective 

TaqMan miRNA or gene expression assays.  MiR-144 expression was quantified using the 

∆∆CT relative expression method, and the ∆CT values are reported.  ΔCT was calculated as 

CT,miR-144 - CT,housekeeping for each sample.  A positive value for ∆CT indicated greater 

expression of the housekeeping gene than miR-144.  Conversely, a negative value for ∆CT 

indicated lesser expression of the housekeeping gene relative to miR-144. Mean CT and 

∆CT values for each sample were reported with the standard error of the mean. 

Table 6 – Target and housekeeping genes for cellular and exosomal samples. 

Target gene 
K562 cellular 

expression 

K562 exosomal 

expression 

Reticulocyte–enriched 

blood exosomal expression 

miR-144-3p X X X 

Housekeeping genes   

RNU6B  X   

RNU48  X   

RNU44  X   

hsa-miR-16 X   

cel-miR-39 

(spike-in) 
 X X 

4.2.7 Statistical Analysis 

All population means are reported as the mean ± the standard error of the mean.  To 

compare population means, one- or two-tailed (as indicated) Student’s t-tests with 95% 

confidence levels (α = 0.05) were performed.  Prior to running the t-test a 95% confidence 

level F-test was used to test whether the variances of the populations were equal.  The result 
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of that test is reported with the specific data.  P-values less than 0.05 were considered 

indicative of a statistically significant result.  Equation 1 on page 32 shows the formula 

used to calculate the effect size (Cohen’s d) as another measure of the magnitude of the 

difference between two independent sample means.  To account for differing sample sizes, 

a pooled standard deviation was used in the calculation of the effect size.  The formula for 

the pooled standard deviation is in Equation 2 on page 32.  All analyses were done in R or 

Excel.  R codes are included in the appendix. 

4.3 Results & Discussion 

4.3.1 Transmission Electron Micrographs of Exosomes 

Figure 28 shows TEM images of exosomes isolated from the culture medium of 

CD71+ cells (top row, 40,000X) and K562s (bottom row, 30,000X) after twenty-four hours 

and with uranyl acetate counterstaining.  The exosomes are the circles with distinct black 

outlines.  The diameters of the exosomes pictured vary and fall into the expected 30-100nm 

size range (Théry, 2002). 

A larger sized (~100nm) K562 cell-derived exosome was also imaged (Figure 29).  

This is similar to the large (~100nm) CD71+cell-derived exosome in the first image on the 

top row of (Figure 28); it is indicated by a black arrow.  These images are confirmation 

that exosomes are released by CD71+ reticulocytes in vitro. 
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Figure 28 - TEM images of exosomes. Scale bars: 100nm. 

 

Figure 29 – Large K562 cell-derived exosome (30,000X). Scale bar: 100nm. 
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4.3.2 CD71+ Reticulocyte-Derived Exosomes are CD63+  

The CD63 ExoELISA-Ultra was run according to the manufacturer’s instructions to 

accomplish two tasks: 1) to quantify the number of exosomes in 5µg equivalent protein 

and 10µl samples of CD71+ reticulocyte- and K562-derived exosomes and 2) to confirm 

that these exosomes are CD63+, since CD63 is highly enriched on exosomal membranes 

(Simons, 2009).  Figure 30 shows the standard curve derived from the ELISA data.  Figure 

31 shows the quantification of the number of CD63+ exosomes in the 5µg equivalent 

protein samples.  CD71+ reticulocytes (n=3) released 35.8x109 ± 22.8 x109 CD63+ 

exosomes compared to 72.3x109 ± 13.9 x109 CD63+ exosomes released by K562 cells 

(n=5).  When these two population means were compared with a two-tailed, equal variance, 

95% confidence level student’s t-test the difference between them was not significant (p = 

.194 > 0.05, effect size = 1.07).  This suggests that the number of exosomes released by the 

two cell types was comparable, which was not an unexpected result. 

 

Figure 30 – CD63 ELISA Standard Curve. Optical density at 450nm on y-axis. 
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Figure 31 – 35.8x109 CD63+ exosomes were released by CD71+ reticulocytes per 5ug 

equivalent protein (n=3); 72.3x109 by K562 exosomes (n=5).  The difference in 

exosome release was not significant (p > 0.05) suggesting the cell types released 

comparable amounts of exosomes even with differing starting cell numbers. 

4.3.3 K562 Exosomal Protein Concentration is Greater 

Figure 32 shows the total protein quantified in 10µl samples of CD71+ reticulocyte-

derived exosomes and K562 cell-derived exosomes with the microBCA assay.  The error 

bar for the CD71+ exosomes data point is too small to be seen on the y-axis scale.   

  

Figure 32 – K562 exosomes (n=5) package more protein than reticulocyte exosomes 

(n=3) (p < 0.05). 
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A one-tailed, equal variance, 95% confidence level t-test performed to compare the 

difference between the two mean protein concentrations found that the K562 exosomal 

protein concentration was significantly higher (p = 0.044 < 0.05, effect size = 1.86).  These 

data suggest that at baseline the amount of protein in K562 exosomes is about twice that 

of the CD71+ cell exosomes.  However, further analysis was undertaken to determine 

whether this increased amount of protein was a factor of the total number of exosomes that 

was released by the cells instead of a factor of the amount of protein being packaged by 

the K562 cells into exosomes.  This was undertaken because no significant difference, 

considering the standard error of the mean, was found between the total number of 

exosomes in the 5µg samples. 

4.3.4 Exosome Release Potential 

To determine whether the increased protein concentration in the K562 exosomes was 

a factor of total exosome release, the number of exosomes in 10µl samples of the two 

populations were determined at the same time the number of exosomes in the 5µg samples 

were determined.  When the total protein concentration for each sample was divided by its 

corresponding number of samples Figure 33 was generated and protein content per 

exosome is shown.  The data in Figure 33 suggest that the protein content/exosome is about 

five times greater in CD71+ cells rather than the K562 exosomes.  A two-tailed, unequal 

variance t-test comparing the two population means returned a p-value of 0.214 (effect size 

= 1.77).  This data suggests that the protein content, when normalized to the number of 

exosomes, is comparable between the two exosome sources.  This further corroborates the 

result in Figure 31. 
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Figure 33 – Total protein concentration normalized to exosome release. K562 (n=5); 

CD71+ (n=3). 

Similarly, the number of exosomes per microgram of protein in a millilitre of sample 

(for the equal 10µl aliquots) is comparable between the two populations, which is just an 

inversion of the data in Figure 33 (Figure 34, p = 0.369, effect size = 0.709).  Figure 34 is 

also consistent with the data (speaking to the reliability in technique and performance of 

the ELISA kit) in Figure 31, where 5µg exosomal protein equivalent was used to determine 

the exosomal number in the samples.  These figures were generated as a matter of appealing 

to individual preferences regarding normalization and data visualization.  Both are not 

necessary for shorter reports.  In actuality, Figure 31, Figure 32, and Figure 33 are quite 

sufficient. 
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Figure 34 – Total exosome number normalized to protein concentraiton (10µL 

sample).  Inversion of Figure 33.  K562 (n=5); CD71+ (n=3). 

In what will be termed exosome release potential the more interesting conclusion 

that can be drawn from these data is that a fewer CD71+ cells—for the three samples an 

average of 4.16x106 cells—release a comparable (in absolute terms, 1.64 times less) 

number of exosomes as 107 K562 cells.  Moreover, these exosomes package a similar 

amount of total protein.  A lesser number of reticulocytes releasing this number of 

exosomes could speak to their maturing in vitro over the twenty-four-hour incubation 

period.  This can be explained by the fact that exosome release by immortalized cell lines 

often requires stimulation or very high culture volumes and previously, K562s have had to 

be stimulated to release greater amounts of exosomes (Savina, 2003).   

Taken together, these data lead to the following major conclusions. First, 10µl 

samples of K562 exosomes package more protein than the same volume of CD71+ 

reticulocyte exosomes. Second, this increased protein packaging may be due to the greater 

number of K562s exosomes released, but once normalized there is no difference between 
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the two populations.  It is worth noting that at the beginning of this analysis there were no 

expectations for the nature of the relationship between K562 and CD71+ exosome release.  

The inclusion of K562 cells and exosomes in the study was for the purposes of having an 

independent group for comparison and to have a better sense of the scale of the results for 

the CD71+ cells.  These findings satisfy the reasoning for including the K562 cell line. 

4.3.5 MiR-144 Expression in Healthy Exosomes Is Low 

A preliminary qPCR analysis of the miR-144 expression was conducted in exosomes 

released into the culture medium of three reticulocyte-enriched blood samples incubated 

for twenty-four hours.  Reticulocyte-enriched blood here means that CD71 

immunomagnetic separation had not yet been implemented into the protocol.  One of the 

reticulocyte-enriched blood-derived exosome samples was isolated from the culture 

medium of cells collected from Layer 1 of the three bands observed after Percoll separation.  

The other two exosomal samples was isolated from the culture medium of cells pooled 

from Layers 1 and 2 pooled.  The reticulocyte-enriched blood-derived exosomal miR-144 

expression was compared to both K562 cellular and miR-144 expression.  Table 7 lists 

RNA concentrations for three reticulocyte-enriched blood samples and four K562 samples.  

The magnitude of the concentrations is similar for the two populations.  Since this was a 

rough analysis no statistics were performed.  MiR-144 expression was measured in the 

samples whose names in Table 7 are bolded.  The miR-144 expression in the corresponding 

K562 cellular samples was also assayed.  There was not enough total RNA (500ng) to run 

the qPCR with the samples not bolded.   
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Table 7 – Exosomal RNA concentrations. 

Sample RNA concentration (ng/µl) 

KP45607 (L1 & L2) 22.06 

KP45734 (L1 & L2) 48.11 

KP45680 (L1) 44.07 

9-Mar Flask 2 55.11 

9-Mar Flask 3 18.04 

10-Mar Flask 1 65.58 

10-Mar Flask 2 34.62 

The resultant CT values, as well as the ΔCT values after normalization to the 

housekeeping genes are shown in Table 8.  Of the three K562 exosomal samples, only two 

had detectable miR-144 expression.  The calculation of the standard error of the mean 

reflects this.  The ΔCT values are positive for both the exosomal and cellular samples which 

means that the housekeeping genes in all samples had higher expression levels than miR-

144.  MiR-144 expression was also higher in K562 cellular RNA than either exosomal 

sample.  Since exosomes are nanonmeter-sized, it is no surprise that the RNA expression 

in the cell is greater.  Follow-up analyses with CD71+ reticulocyte cellular and exosomal 

RNA could provide more insight into the relative expression of miR-144 in a more purified 

cell population.  However, the expression is expected to be low since blood donors are not 

anemic.  MiR-144 is a marker of cell oxidative stress (Sangokoya, 2010) and is not 

expected to be elevated in healthy individuals’ erythroid cells.  Similarly, more analysis of 

RNA concentration and expression level by each 70% Percoll-separated layer could 

provide a deeper lens into the levels of RNAs as a function of reticulocyte age and 

maturation.   
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Table 8 – MiR-144 expression in cellular and exosomal samples. RB = reticulocyte-

enriched blood. 

 K562 cells 

(n=4) 

K562 exosomes 

(n=3) 

RB-derived 

exosomes  

(n=2) 

miR-144 Cт 

Mean ± SEM 
31.23 ± 0.87 37.23 ± 0.77 36.73 ± 0.02 

ΔCт  

Mean ± SEM 
8.03 ± 0.81 13.33 ± 1.96 8.30 ± 0.57 

4.4 Aim 2 Summary 

In this aim, CD71+ peripheral reticulocyte-derived exosomes were isolated from the 

culture medium of the cells after a twenty-four-hour incubation period.  This is the first 

such demonstration of the isolation and collection of these exosomes from human 

peripheral reticulocytes in vitro.  The exosomes were visualized with transmission electron 

microscopy and the validation of their expression of human CD63 then performed with 

ELISA.  The total protein and RNA concentrations for these exosomes were also reported, 

comparing the levels to that of the K562 reticulocyte-like cell line.  Overall, the nanometer-

sized vesicles package small amounts of RNA and protein.  However, the identification of 

specific RNAs and proteins warrants further investigation, particularly those with clinical 

relevance.   

Further study is also needed on what was introduced as the exosome release potential 

of the CD71+ reticulocytes.  This could provide insights into the magnitude of exosome 

release during reticulocyte maturation.  Additionally, evaluating the magnitude of exosome 

release for each of the three layers observed after 70% Percoll separation could provide a 

more granular view.  One consideration is putting the magnitude of exosome release into 
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perspective.  If in the circulation (which is the physiological context) there are many cell 

types in addition to reticulocytes releasing exosomes, then the following question arises: 

which cell type’s exosomes has the predominant effect?   One could speculate that the cell 

type with the highest absolute cell number may.  However, the potency of a biological 

effect could be more dependent on the specific molecule and its biochemical action.  

Although the technical complexity would be increased, future experiments with multiple 

cell types may provide greater clarification on this issue.  Overall, the intent is to uncover 

potential therapies and often, since biological molecules are studied in isolation, it can be 

difficult to sift through what are real physiologically-relevant effects and observations.  

Finally, extending these experiments to sickle cell disease samples could provide intriguing 

data on the exosomal profiles of sickle reticulocytes from the many angles described above.  

The possibilities are many. 

On a technical note, the ELISA used to assay CD63 was prone to discrepancies and 

returned a high standard deviation for some of the standards, a result that has been noticed 

with products from the manufacturer (Franquesa, 2014).  The high standard deviation could 

be due to the number of washing steps during the course of the assay, the potential to not 

completely remove unbound the primary or secondary antibodies, or to the possible mixing 

that can occur between wells during liquid removal.  Currently, there are two primary 

techniques available to quantify exosomes: the Nanosight and the ExoELISA (System 

Biosciences).  The ExoELISA is the much cheaper and less quantitative option (the 

exosomes used to build the standard curve are not reticulocyte- or K562-derived so CD63 

expression is relative), but as alluded to earlier can be difficult to work with and may have 

quality control issues.  The data that were presented here were the first successful runs after 
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testing three different ELISA kits prior.  The previous kits were not the ExoELISA-Ultra 

and went off-market for some time.  The primary challenge with the kits was the instability 

of the standards, which rendered quantitation of the exosomal samples impossible.  

Moreover, it appears that the ExoELISA-Ultra is a more reliable iteration of the product.  

More broadly speaking, more consistent quantification methods are needed, especially if 

access to the more robust NanoSight system is not available and given the expense of the 

ELISA.   
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CHAPTER 5. DELIVERY OF EXOSOMES TO ENDOTHELIAL 

CELLS 

5.1 Introduction 

The fate of exosomes once they are released into the extracellular space is the current 

interest of many investigators worldwide because of their potential to act as intercellular 

communicators via their packaging of RNAs and proteins.  This idea of exosomes 

functioning as vessels for intercellular communicators has been reported with proteins, 

lipids, mRNAs, and miRNAs as the material exchanged between donor and recipient cells 

(Théry, 2002; Valadi, 2007; Simons, 2009; Kosaka, 2010; Iguchi, 2010).  Moreover, this 

phenomenon has been reported to occur between monocytic THP-1 (donors) and human 

mammary epithelial cells (recipients) (Zhang, 2010).  Whether a similar process occurs 

during healthy (or sickle) reticulocyte maturation between reticulocytes and other cells in 

the periphery is unknown.  Figure 35 shows the many pathways of exosome delivery of 

macromolecules currently under investigation. 

Much research on endothelial cells in sickle cell disease (SCD) has focused on cell 

adhesion to the endothelium that can promote vaso-occlusion.  Extensive literature is 

available about the cytokines like TNF-α or IL-1β and integrins that play a role in both 

white and red blood cell adhesion to the vascular endothelium in SCD (Barabino, 2010). 

This aim introduces a new paradigm, reticulocyte-derived exosomes, of intercellular 

communication in erythropoiesis and possibly the promotion of SCD pathology.  The 

results of this aim have implications not only for the understanding of the molecular 
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processes related to reticulocyte maturation, but overall endothelial cell function in healthy 

and potentially disease states.  Ultimately, since sickle cell disease therapies are the goal, 

this aim opens the possibility for therapies directed not just at the mature RBC, but also the 

reticulocyte or endothelial cell. 

 

Figure 35 – Exosomes in human health. Adapted from De Toro, 2015, page 8. 

5.1.1 An Aside on a Novel Mechanism in SCD 

A part of the overarching clinical direction of the thesis was the possibility of 

miRNA exchange between peripheral reticulocytes and endothelial cells in both healthy 

and disease states.  To build upon this because it is most relevant in this chapter and for 

comprehensiveness, the thinking and what formed the conception for this aim was that 

endothelial cells use reticulocyte-derived miR-144 (that was delivered via exosomes) as an 

external signaling cue for modulation of nuclear factor erythroid 2-related factor 2 (NRF-

2) activity, a process that drives the endothelial cells towards a pro-inflammatory, pro-
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adhesive, and more permeable state. The postulation is that reticulocyte promotion of 

vascular dysfunction in sickle cell disease is mediated by miR-144, an erythroid-specific 

miRNA discussed in Section 2.5. Reticulocyte miR-144 levels are elevated in sickle 

patients and are associated with anemia severity (Sangokoya, 2010).  In sickle reticulocytes 

miR-144 has been reported to be a direct regulator of NRF-2, a transcription factor that 

controls the expression of a set of antioxidant related proteins (Sangokoya, 2010; Cheng, 

2013).  Moreover, increased levels of miR-144 in sickle reticulocytes are associated with 

decreased levels of NRF-2. 

NRF-2 has been shown to mitigate the effects of the inflammatory cytokines tumor 

necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β) in endothelial cells, 

supporting its role as an anti-inflammatory agent (Chen, 2006).  In sickle cell disease, TNF-

α and IL-1β promote the expression of vascular adhesion receptors like vascular cell 

adhesion molecule-1 (VCAM-1) on the endothelial cell surface.  These two cytokines also 

promote the production of interleukin-8 (IL-8), a chemokine secreted by endothelial cells 

that promotes reticulocyte adhesion to endothelial cells by activating and increasing the 

avidity of the α4β1 integrin on reticulocyte membranes (Belcher; 2000; Makis, 2000).     

Therefore, downregulation of NRF-2 could promote increased TNF-α and IL-1β 

levels, directing endothelial cells to a more pro-adhesive state with the increased expression 

of adhesion receptors. TNF-α-induced secretion of IL-8 could also promote the pro-

adhesive state. Finally, miR-144 reduction of NRF-2’s anti-inflammatory effects in 

endothelial cells may lead to increased levels of vascular endothelial cell growth factor 

(VEGF) in endothelial cells as a pro-survival response. Increased VEGF levels could then 
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promote greater vascular permeability, which is one of VEGF’s functions.  The molecular 

process is shown graphically in Figure 36. 

 

Figure 36 – MiR-144’s effects on endothelial cells. 

This aim establishes the experiments that will form the basis for future study of the 

mechanism described above by demonstrating that CD71+ peripheral reticulocyte-derived 

exosomes are internalized by endothelial cells in vitro. 

5.1.2 Experimental Design Considerations 

To execute the aim, three parameters of the experimental design were first 

considered: 1) the cell source’s exosome release per µg total exosomal protein, 2) the 

number of recipient endothelial cells, and 3) the geometry of the culture ware.  The data in 

Chapter 4 shows that on an absolute basis the mean number of exosomes released by 

CD71+ cells per five micrograms total protein is roughly half that of K562 exosomes.  

Therefore, the actual number of exosomes delivered to the endothelial cells would differ 

based on the apparent nonlinear relationship between exosome protein concentration and 
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exosome number.  Oftentimes, published articles do not report both the protein equivalent 

and the exosomal number that is delivered so different approaches were taken with the 

K562 exosomes (since the supply is more easily replenished), followed by the CD71+ 

exosomes as described in the Materials & Methods section.  The number of recipient 

endothelial cells was also considered a tunable parameter because too many cells could 

diffuse the fluorescent signal indicating internalization of the exosomes.  Finally, related 

to the number of endothelial cells was the geometry of the culture ware upon which the 

cells would be seeded.  Since endothelial cells are adherent, considering their 

recommended seeding density (in this case, 2500 cells/cm2) was needed to determine the 

correct geometry that would not preclude the previous parameter of total recipient cell 

number. 

5.2 Materials & Methods 

5.2.1 Endothelial Cell Culture 

Human umbilical vein endothelial cells (HUVECs) purchased from Lonza were 

cultured up to passage 5.  The cells were cultured in endothelial cell basal medium (EBM-

2; Lonza) supplemented with the components in the EGM-2 BulletKit (Lonza): human 

epidermal growth factor, 0.5mL; vascular endothelial growth factor, 0.5mL; R3-insulin-

like growth factor-1, 0.5mL; ascorbic acid, 0.5 mL hydrocortisone, 0.2mL; human 

fibroblast growth factor-beta, 2mL; heparin, 0.5mL; fetal bovine serum, 10 mL; 

gentamicin/amphotericin-B, 0.5mL.  No adjustments to the media formulation were made.   

The cells were seeded at a concentration of 2500 cells/cm2 on flasks coated with 1% gelatin 

(Sigma) and incubated at 37°C and 5% CO2. 
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5.2.2 Fluorescence Staining of Exosomes 

On the day prior to exosome incubation, 5000 HUVECs were seeded onto a 35mm 

dish with a No. 1.5 10mm glass insert coated with 1% gelatin (Mattek).  The culture 

medium volume was initially brought to 1mL to allow the cells to settle after seeding.  After 

one hour, the total volume in the dish was brought to 2.5mL.  On the next day, the cells 

were incubated with exosomes. 

5.2.3 Exosome Incubation with Endothelial Cells 

Each exosomal sample was stained with BODIPY TR ceramide (ThermoFisher 

Scientific).  The dye was purchased as 250µg of lyophilized powder.  It was reconstituted 

in 354.25µL DMSO to prepare a 1mM stock upon receipt, aliquoted, and stored at -20°C 

prior to use.  1µL of the stock dye solution was delivered to 100µg or 20µg protein 

equivalent of K562 exosomes or approximately 20µg protein equivalent CD71+ exosomes. 

The protein equivalent for the CD71+ exosomes varied, as entire samples were used to 

maximize the total number of exosomes delivered to the endothelial cells.  The total volume 

of the exosome plus dye solution was brought to 100µL with 1X PBS.  The exosomes were 

stained for 20 minutes at 37°C in the dark.  Control samples (1X PBS) were also treated 

with the same concentration of dye for the same amount of time. After the incubation, the 

exosome solution was filtered through exosome spin columns (Life Technologies) 

according to the manufacturer’s directions to remove unbound dye.  The stained exosomes 

were then incubated with the HUVECs in the 35mm glass-bottom dishes with 10mm glass 

inserts for two hours at 37°C.  After the two-hour incubation, the HUVECs were washed 

with warm 1X PBS and fixed with 10% neutral-buffered formalin (Fisher) for fifteen 
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minutes at room temperature.  After fixation the cells were washed three times with 1X 

PBS, mounted with DAPI-Fluoromount-G (Southern Biotech), and a coverslip put atop the 

glass insert.  The cells were imaged on the Nikon Eclipse Ti inverted fluorescence 

microscope at 20X magnification, 19ms exposure on the DAPI (blue) channel and 300ms 

exposure on the DSRED (BODIPY TR Ceramide) channel.  Figure 37 shows the 

experimental approach graphically.  No look-up tables were used to scale or augment the 

red fluorescence in the images. 

 

Figure 37 – Aim 3 Experimental Approach.  Exosomes are labeled with dye that 

fluoresces red.  Endothelial cells that internalize stained exosomes are expected to 

fluoresce red. 

5.3 Results & Discussion 

Figure 38 and Figure 39 show the fluorescence detected in HUVECs treated with 

100µg protein equivalent of K562 exosomes after two hours.  The cell nuclei are stained 

blue with DAPI.  The exosomes, particularly in the concentrated areas where there are dots, 

appear to localize along the periphery of the cell nucleus and throughout the cytoplasm.  

BODIPY TR ceramide is a sphingolipid analog that has traditionally been used in Golgi 
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apparatus trafficking and tracking studies.  So, it is possible that exosomal membranes, 

which is where the dye would have localized during staining, fused with nuclear and 

organelle membranes within the endothelial cells.  No fluorescence was detected in the 

cells that were treated with the 1X PBS control (Figure 40).  These data indicate that 

endothelial cells internalize K562 cell-derived exosomes and imply the possibility that 

intercellular communication via exosomes could occur between the two cell types. 

 

Figure 38 – HUVECs incubated with 100µg exosomes (red) for two hours.  Scale bars: 

50µm. 

 

Figure 39 – HUVECs incubated with 100µg K562 exosomes (red). Scale bars: 50µm. 
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Figure 40 – HUVECs incubated with PBS + dye (red) for two hours. Scale bars: 50µm. 

The observation was made that the results for the data above reflected nearly five 

time the amount of the total CD71+ exosomal protein amount (~20µg).  Therefore, to 

determine what fluorescence signal ~20µg protein equivalent of K562 exosomes would 

result in, that amount of exosomes was also delivered to HUVECs, the results of which are 

shown in Figure 41.  DAPI-stained nuclei were not layered onto the images of the BODIPY 

ceramide fluorescence because of the greater intensity of the DAPI fluorescence.  The 

BODIPY ceramide fluorescence was captured with the same exposure time (300ms).  The 

difference in fluorescence intensity is readily noticeable.  PBS control results are shown on 

the third panel.  Given that the CD71+ cells release on average two times less exosomes, 

the decision was made to pool the CD71+ exosome samples because there appears to be an 

exosomal number below which fluorescence after staining with BODIPY cannot be 

detected.  No internalization was detected as summarized in Table 9, which suggests uptake 

may be recipient cell type-dependent. 
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Figure 41 – HUVECs incubated with 20µg K562 fluorescent exosomes (red) for two 

hours in the first two panels. Scale bars: 50µm. 

Table 9 – Summary of reticulocyte exosome-HUVEC studies. 

Experiment 
Exosome protein 

equivalent 

No. endothelial 

cells 
Fluorescence? 

1 20 µg 5000 No 

2 20 µg 2500 No 

3 60 µg 2500 No 

 



 79 

5.4 Aim 3 Summary 

In this aim K562 cell exosomes were delivered to endothelial cells and allowed to 

incubate for two hours.  Imaging demonstrated that the exosomes were internalized by the 

endothelial cells.  Inspection of the fluorescence images indicated that the exosomes 

localized outside of the cell nuclei and throughout cytoplasm, suggesting fusion with the 

cell’s endomembrane system.  HUVEC incubation with CD71+ reticulocyte-derived 

exosomes resulted in no detection of internalization, suggesting cell-specific 

internalization of the exosomes.  Since reticulocytes are hypothesized to interact with 

vascular endothelial cells, future studies using human microvascular endothelial cells or 

human aortic endothelial cells may be more appropriate.  However, the tissue-specific 

internalization of the exosomes may be a barrier—i.e., most commercially available human 

microvascular endothelial cells are derived from dermal tissues so the exosomes may not 

be internalized by those cells either. 

Further study on where the exosomes are localizing is a viable future direction, and 

could be completed with the concomitant staining for organelles markers, e.g., Golgi, 

endoplasmic reticulum, etc.  Similarly, more time points could provide more insight to 

trafficking of the exosomes within the endothelial cells as a function of time and location.  

Additionally, RNA- or protein-specific dyes could be used to determine where these 

macromolecules are being delivered holistically within the endothelial cells.  The caveat 

there would be that because exosomes package so little RNA and protein, visualizing this 

localization may require large amounts of sample. 
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Beyond studies on exosome localization, determining the functional effects of the 

exosomes after specific times is of interest, particularly in disease states.  For sickle cell 

disease, the mechanism described in this chapter’s introduction is the obvious next step of 

analysis once sickle samples can be procured.  Technically, once the samples are acquired 

execution should be fairly straightforward because the required techniques (reticulocyte 

isolation, cell culture, exosome isolation, protein quantification, etc.) are now standard.  

Unmasking the nature of reticulocyte exosome “communication” with endothelial cells 

would open a new paradigm in sickle cell research, and reticulocyte biology in general.  

Finally, given the history of the laboratory in which this thesis was conducted, performing 

these experiments under dynamic flow in microfluidic devices rather than static conditions 

would add another physiologically relevant parameter to the in vitro experiments.  Since 

red cells are in constant motion in the circulation, performing exosome incubation studies 

under flow could be a better model for their native environment.  Using microfluidic 

devices to recapitulate processes in the vasculature is one of the main advantages of 

designing these devices (van der Meer, 2009). 
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CHAPTER 6. CONCLUSION 

 The ability to isolate reticulocytes from peripheral blood offers the opportunity to 

better understand this cell type’s function in healthy and disease states.  As an extension, 

uncovering the role of reticulocyte-derived exosomes in disorders where reticulocytes may 

be a source of pathology is critical to more fully understanding the progression and steady 

states of those diseases.  The method for the isolation of human peripheral reticulocytes 

detailed visually in Chapter 3 is straightforward and requires standard lab equipment except 

for the immunomagnetic separator, features that can lead to its wide adoption.  Moreover, 

to this group’s knowledge it is the first demonstration of human peripheral CD71+ 

reticulocyte isolation at such a thorough level and without the partitioning of samples, 

which was not previously available in the literature.  The primary work from which this 

thesis was adapted was a cord blood reticulocyte enrichment method and its relatively 

recent publication date (2011) indicates the limited methods available for reticulocyte 

isolation from either peripheral or cord blood.  Furthermore, this thesis making peripheral 

blood reticulocytes available for in vitro use is especially tremendous for future sickle cell 

disease studies because the procurement of cord blood reticulocytes is unlikely given the 

sample size drawbacks to further segmenting the sickle patient population by gender and 

pregnancy status.  The observation of three distinct bands above the 70% Percoll cushion, 

which has not been reported previously, offers the opportunity to study each layer 

individually and extrapolate the findings to insights about reticulocyte age and maturation.  

Moreover, after CD71 immunomagnetic selection approximately 90% of the CD71+ 

population being distinct from the corresponding CD71- population per sample when 
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measured via flow cytometry was achieved, showing the success of this thesis’ isolation 

procedure. In addition, the further isolation and characterization of human peripheral 

CD71+ reticulocyte-derived exosomes in this study are the first demonstration of these 

phenomena with a pure population of human peripheral cells and are the foundational 

studies needed for the more mechanistic investigations on reticulocyte maturation and 

exosome function that will likely follow this thesis.   

The technical limitations of the work, when applicable, are detailed in each specific 

chapter.  However, the overarching limitation to the breadth of this work was the absence 

of sickle cell patient samples, the procuring of which can be especially difficult due to 

limited patient access and the establishing of connections with hospitals.  However, great 

care was taken to emphasize the clinical relevance of this thesis to sickle cell disease 

because the pathology formed the conceptual basis for the aims that were performed.  

Additionally, all the blood donors in this thesis were African-American because the 

expectation is that should sickle samples be acquired in the future, these data will be used 

as the control samples. 

The development of a method for the isolation of reticulocytes from peripheral 

blood undoubtedly provides opportunities for the conducting of studies that could not once 

be done due to the limited availability of these cells.  From erythropoiesis to specific 

disease states in which reticulocytes drive pathology, the opportunities are many for the 

use of human peripheral reticulocytes in future investigations. Table 10 lists future research 

directions by specific aim.  Due to the research thrust in the laboratory in which this thesis 

was performed being sickle cell disease, an emphasis on sickle cell is made in these future 

directions. 
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Table 10 – Future research directions. 

Aim Topic (emphasis on SCD) 

1 Innovation with protocol (discussed in Chapter 3) 

1 Use of isolation methods with disease samples 

2 Time course studies of exosome release by CD71+ cells in vitro 

2 Healthy/sickle exosomal transcriptome and proteome profile 

2 CD34+ cell differentiation and exosome retrieval (reticulocyte exit) 

3 
Response of endothelial cells to reticulocyte-derived exosomes 

(healthy/not healthy) 

3 Sickle exosome binding via the α4β1 integrin to endothelial cells 

3 Microfluidic device studies with exosome-treated endothelial cells 

As discussed in Chapter 3, the peripheral reticulocyte isolation method introduced 

is not fixed and is open to innovation, particularly at the leukocyte and platelet depletion 

step.  The extension of the syringe barrel to load the entire sample and PBS washes could 

reduce the length of the protocol by at least two to three hours.  The shortening of that one 

step could reduce the labor- and time-intensiveness of the technique considerably.  

Extending the method to disease samples, like sickle cell disease which has been 

mentioned, as well as malaria or diabetes could prove it to be a useful source of peripheral 

reticulocytes—especially since currently it is not considered so (Moreno-Pérez, 2013). 
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As discussed in Chapter 4, time-course studies of exosome release by CD71+ cells 

in vitro would provide greater insight into the magnitude of exosome release by these cells 

as they mature.   Further analysis of the exosome release by each of the three layers 

observed after Percoll separation would give a more nuanced view.  Ultimately, the 

comparison of the release profiles across multiple cell types would give a better sense of 

scale and an indication of which cell type’s exosomes would have the predominant effect 

in the physiological state.  Similarly, profiling the transcriptomes and proteomes of healthy 

and disease samples in the age of bioinformatics and big data may prove fruitful to 

precision medicine efforts.  Departing from a peripheral blood source for reticulocytes and 

instead turning towards a hematopoietic progenitor cell source would allow more tailored 

experiments at different points during erythropoiesis.  Profiling exosome release by CD34+ 

cells as they differentiate towards the erythrocyte has not been done, having relevance not 

just to peripherally circulating cells but also mechanisms in the bone marrow and the point 

at which the reticulocyte exits the bone marrow. 

In Chapter 5 the potential interactions between reticulocyte-derived exosomes and 

endothelial cells in regards to vascular function (and dysfunction in pathological states like 

sickle cell disease) were addressed.  The molecular response of endothelial cells to 

exosomes is the obvious next course of investigation.  In the specific case of sickle cell 

disease, the potential presence of the α4β1 integrin on the surface of sickle reticulocyte-

derived exosomes, which has been implicated in the cell adhesion in the vasculature, could 

further elucidate mechanisms for vaso-occlusion in sickle cell disease.  Finally, the 

troduction of dynamic fluid flow with microfluidic devices is another avenue for 

investigation.  In their native environment of the peripheral circulation, red cells are in 
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constant motion and in vitro experiments that can capture this feature will undoubtedly be 

more physiologically relevant.  An example of a specific study could be an adhesion assay 

in which endothelial cells that are treated with healthy/sickle reticulocyte-derived 

exosomes are then exposed to mature sickle red blood cells, as well as white blood cells 

and platelets and the amount of adhesion of these cells to the endothelial cells recorded and 

quantified. 

Ultimately, the aim is to develop new therapies directed at reticulocyte-driven 

pathologies.   What’s envisioned for the continuation of this project is the investigation and 

harnessing of specific macromolecules (RNAs, proteins) that are differentially expressed 

in disease-state exosomes.  This targeting may be positive or negative—either an attempt 

to downregulate or upregulate the target molecule.  For example, if miR-144 is expressed 

more in sickle exosomes, then it could be downregulated with an inhibitor, or conversely 

its downstream target (NRF-2) activated.  Since exosomes package such small amounts of 

macromolecules this route is more appealing than utilizing the exosomes whole. 

The major objective of this thesis was to develop a consistent and reliable protocol 

for the isolation of human peripheral reticulocytes. From there, isolating and characterizing 

the exosomes released by these cells in vitro was done to lay the foundation for more 

targeted studies investigating the function of these exosomes beyond their role in 

transferrin receptor clearance during reticulocyte maturation.  Ultimately, the completion 

of these aims is one step closer to uncovering whether unidirectional (or even bidirectional) 

macromolecule exchange from reticulocytes to endothelial cells modulates endothelial cell 

function in healthy and disease states. 
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APPENDIX A. RETICULOCYTE PROTOCOLS 

 The following protocol details the method for the isolation of CD71+ reticulocytes 

from human blood.  A desired requisite for the publication of this method is that the steps 

for the reticulocyte isolation procedure will be detailed in narrative form in a non-truncated 

methodology section and provided in list-style (as seen here) in a supplementary document.   

A.1  Cellulose column preparation   

 This protocol should be executed on the day prior to reticulocyte isolation from 

whole blood.  This protocol was adapted from Venkatesan, 2012. 

Materials 

 Cellulose, medium fibers (Sigma C6288) 

 10mL centered syringes (BD 309604) 

 Whatman grade 105 lens tissue (100 x 150mm, 25 wallets, Whatman 2105-841) 

 15mL and 50mL polypropylene tubes  

 1X PBS (Ca2+ & Mg2+ free) 

Steps 

1. Wear a mask to avoid inhalation of cellulose powder.  Or work in fume hood. 

2. Cut lens tissue into 10mm x 10mm squares. 

3. Remove syringe plunger. 

4. Use forceps to load two squares into syringe, covering the opening of the syringe. 

5. Load cellulose into the barrel, up to ~8mL mark.  

6. Reinsert syringe plunger and push cellulose down.  Make sure that the top of the 

cellulose layer is at the ~5.7mL mark on the syringe. 
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7. Repeat for the number of columns needed.  For one 10mL blood sample, 4 columns are 

needed. 

8. Store columns in absorbant packing material at room temperature until use. 

A.2 70% Percoll Solution Preparation 

All steps must be performed in sterile conditions.  It is best to prepare the solution at 

the very start of the day of reticulocyte isolation so that the Percoll can warm to room 

temperature prior to its use. 

Materials 

 Percoll, cell culture-tested (Sigma P4937), 4°C 

 10X PBS 

 1X PBS (Ca2+ & Mg2+ free), sterile 

 Motorized pipettor 

 Serological pipets 

 

Steps 

1. Prepare “100%” Percoll: Add 9 parts cell-culture tested Percoll to 1 part 10X PBS, 

depending on desired volume.  For example, to make 12mL 100% Percoll: mix 

10.8mL Percoll stock and 1.2mL 10X PBS. 

2. Add 7 parts 100% Percoll to 3 parts 1X PBS based on desired volume.  For example, 

to make 15mL 70% Percoll: mix 10.5mL 100% Percoll and 4.5mL 1X PBS. 

3. Load 15mL tubes with 6mL 70% Percoll. 

4. Keep 70% Percoll solution at room temperature. 

A.3 Isolation of CD71+ Reticulocytes from Peripheral Blood 

Materials 
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 10mL blood sample in EDTA vacutainer (purple cap) 

 15mL and 50mL polypropylene tubes  

 2mL cryovials 

 1X PBS (Ca2+ & Mg2+ free), sterile 

 MACS BSA Stock Solution (Miltenyi 130-091-376), 4°C 

 autoMACS Rinsing Solution (Miltenyi 130-091-222), RT 

 CD71 Beads (Miltenyi 130-046-201), 4°C 

 Motorized pipettor & serological pipets 

 Micropipettors & tips 

 Plastic transfer pipets 

 Un- and refrigerated centrifuges with swinging bucket rotor 

 autoMACS pro separator + 15mL chill rack 

 Cell counter 

 T-25 flask 

 Reticulocyte culture medium 

Prior to Start 

1. Prepare MACS Buffer (PBS/0.5% BSA/2mM EDTA) Solution: Dilute MACS BSA 

Stock Solution 1:20 with autoMACS Rinsing solution (1mL BSA stock + 19 mL 

Rinsing). Keep at 4°C. Good for 2 weeks. 

2. Precool chill rack at 4°C. 

Steps 

Plasma Removal & Leukocyte and Platelet Depletion 

1. Secure cellulose columns into 50mL polypropylene tubes with tape. 

2. Load each cellulose column with 6mL 1X PBS.  While PBS is traveling through 

columns proceed to Step 3. 

3. Transfer whole blood from vacutainer gently to 15mL polypropylene tube. 

4. Centrifuge: 1000g/10 minutes/room temperature (RT)/acceleration:5/no brakes. 

5. Use transfer pipets to remove plasma.  Aliquot 1mL plasma per cryovial. 



 89 

6. Dilute packed cell volume to twice the original blood sample volume.  For example, 

for a 10mL blood sample bring volume up to 20mL.  This may require transferring 

sample to 50mL tube. 

7. (only when no PBS is at top of cellulose column) Load 5mL of diluted blood to each 

cellulose column.  Note: One 10mL blood samples requires four columns. 

8. Allow blood to pass through columns (2-3 hours). 

70% Percoll Separation 

1. Once blood has almost passed through completely, load 5mL 1X PBS into each 

column. 

2. Insert plunger and push rest of solution through the column. 

3. Pool samples (usually two 50mL tubes needed) and centrifuge: 1000g/10 

minutes/RT/acceleration:5/no brakes. 

4. Aspirate PBS.  Combine pellets.  Bring volume to 10mL.  Mix gently with low speeds 

on motorized pipettor. 

5. Layer 5mL blood onto 6mL 70% Percoll cushion with the gravity mode dispense 

setting on the motorized pipettor.  Note: angle tube so that the meniscus of the 70% 

Percoll is around the 5.2mL mark of 15mL tube, then load blood.  Load only one tube 

at a time.  Great care should be taken with this step. 

6. Centrifuge: 1200g/15 minutes/RT/acceleration: 5/no brakes (~40 minutes total). 

7. Three layers should be observed after centrifugation. 

8. Use 1mL micropipettor to aspirate and pool the three layers in a new tube. 

9. Add 1X PBS to double the volume of the sample.  Use chilled PBS from now on. 

10. Centrifuge: 300g/10 minutes/4°C/low acceleration/low deceleration. 



 90 

11. Repeat steps 5-7 for rest of blood sample if applicable. 

12. Aspirate three layers and pool with rest of sample. 

13. Add chilled 1X PBS to double the volume of the sample. 

14. Centrifuge: 300g/10 minutes/4°C/low acceleration/low deceleration. 

15. Aspirate PBS.  Resuspend sample in 6-8mL fresh, chilled 1X PBS. 

For some studies stopping at the point may be sufficient.  If not, continue. 

CD71+ Immunomagnetic Selection 

1. Count cells using the Countess II automated cell counter. 

2. Centrifuge: 400g/5 minutes/4°C/low acceleration/low deceleration.  

3. Aspirate supernatant.  Resuspend pellet in 80µL of MACS Buffer per 107 cells.  If 

less than 107 cells do not scale down. 

4. Add 40µL CD71 beads per 107 cells.   

5. Mix well and incubate at 4°C for 15 min. 

6. After incubation, wash cells by adding 1-2mL MACS Buffer per 107 cells. 

7. Centrifuge: 400g/5 minutes/4°C/low acceleration/low deceleration.  

8. Aspirate supernatant.  Resuspend in 500µl MACS Buffer. 

9. Run POSSEL program on autoMACs pro separator. 

10. Cells in Row C of 15mL chill rack are the CD71+ cells (2mL total volume). 

11. Cells in Row B of 15mL chill rack are the CD71- cells (3mL total volume). 

12. Count cells from both populations. 

13. Store at 4°C or proceed to incubation in reticulocyte medium in T-25 flask (minimum 

volume 5mL) at 37°C. 
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A.4 Cytospin Preparation of Reticulocytes 

 Reticulocytes were usually prepared on cytospin slides within twenty-four hours of 

their isolation using the following protocol.  Prior to their immobilization the slides the 

cells were stored at 4ºC in 1X PBS.  It is essential to filter the brilliant cresyl blue stain 

prior to its incubation with the cells to avoid the presence of dye aggregates in the images. 

“Thermo” refers to Thermo Fisher Scientific. 

Materials 

 Brilliant cresyl blue (Merck 101384) 

 EZ single cytofunnels with white cards (Thermo 10-354) 

 Cytoslides (Thermo 5991056) 

 Funnel Clips (Thermo 10-357) 

 1X PBS (Ca2+ & Mg2+ free), sterile 

 1.5mL polypropylene tubes (sterile) 

 Whatman Grade 1 Filter Paper (Whatman 28413923) 

 Reticulocyte culture medium 

Prior to start 

1. Prepare Cresyl Blue 1:100 working solution fresh before each use: 

a. Dilute stock solution of Cresyl Blue 1:100 in 1X PBS. 

b. Filter with Grade 1 filter paper. 

2. Prewarm culture medium in 37°C water bath 

Steps 

1. Aliquot 250,000-500,000 cells from reticulocytes isolated with autoMACS for each 

cytospin preparation.   

2. If alqiout volume greater that 200µL, centrifuge 400g/5 minutes/RT, low acceleration 

and deceleration, swinging bucket rotor.  Resuspend in 100µL 1X PBS. 
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3. Add equal volume Cresyl Blue working solution to sample.  Incubate at RT for 30 

minutes. 

4. After incubation add 200-300µL warm culture medium.  Mix well. 

5. Pipette cells into the assembled sample chamber (clip + cytoslide + funnel) 

(maximum volume for single cytofunnel is 0.5mL). 

6. Cytospin samples: 700 rpm/3min/RT, soft spin (acceleration: low, brake: low).   

7. Air dry the slides in a vertical position. 

8. Examine under microscope. 

A.5 Flow Cytometry Analysis of Acridine Orange-Bound RNA 

 To determine whether the CD71+ cells that were isolated contained RNA, acridine 

orange staining was performed and the stain detected with flow cytometry. 

Materials 

 Acridine Orange (AO) (10 mg/mL, Thermo A3568), 4°C; Emission: PerCp-Cy5-5-A, 

615-620nm) 

 FACS Tubes (12 x 75 mm, capped, BD Falcon 352054) 

 1X PBS (Ca2+ & Mg2+ free), sterile 

 15 mL polypropylene tubes 

 Refrigerated centrifuge 

 Aluminum foil 

Steps 

1. Determine volume of suspension corresponding to 250,000-500,000 cells needed.  

Aliquot this volume into FACS tube.   

2. Balance volume with 1X PBS. 

a. If 250,000 cells stained, bring volume to 0.5mL. 

b. If 500,000 cells stained, bring volume to 1.0mL. 
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3. Add 1µL of 10 mg/mL AO solution to each FACS tube for RNA staining. Cover with 

foil. 

4. Incubate for 30 minutes at room temperature. Do not wash cells.  

5. Analysis must follow immediately.  
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APPENDIX B. EXOSOME PROTOCOLS 

B.1 Protein Quantification of Exosomes 

 The following protocol was used to prepare an exosome sample for the microBCA 

assay.  The microBCA assay was performed as instructed in the manufacturer’s instructions 

with no adjustments.  The standard curve used for protein quantification was fit to a second-

order polynomial. 

Materials 

 10µL exosome sample 

 RIPA Buffer (Thermo 89900) 

 Phosphatase Inhibitor Cocktail (Thermo 78420) 

 Protease Inhibitor Cocktail (Thermo78430) 

 1X PBS (Ca2+ & Mg2+ free), sterile 

 1.5mL polypropylene tubes, sterile 

 Sonicator bath 

 Eppendorf centrifuge 

Steps 

1. Prepare RIPA Buffer by adding 10µL of each inhibitor cocktail to the 1mL RIPA.  

Scale up accordingly depending on buffer volume needed. 

2. Mix exosome sample with 40µL RIPA Buffer. 

3. Sonicate for 15 seconds, three times.   

4. Add 400µL 1X PBS to each tube. 

5. Centrifuge: 13000g/5 minutes/room temperature. 

6. Proceed to microBCA assay. 

7. Remember to consider 1/45 dilution of sample when quantifying protein concentration. 



 95 

B.2 Delivery of Stained Exosomes to Endothelial Cells 

 Exosomes were stained with the lipophilic dye prior to their incubation with human 

umbilical vein endothelial cells (HUVECs). 

Materials 

 Exosome sample (20µg-100µg protein equivalent, 100µL total in 1X PBS) 

 Cultured HUVECs 

 Reticulocyte culture medium 

 HUVEC culture medium 

 Polypropylene tubes (sterile): 1.5mL, 15mL, 50mL 

 Motorized pipettor & serological pipets, micropipettors & tips 

 Cell counter 

 Glass bottom microwell dishes (10mm Microwell, Mattek P35G-1.5-10-C) 

 BODIPY TR Ceramide (Thermo D7540; fluoresces in red spectrum) 

 Exosome spin columns (Thermo 4484449) 

 10% neutral-buffered formalin (Fisher 23-245684) 

 1X PBS (Ca2+ & Mg2+ free), sterile 

 DAPI-FluoroMount-G (Southern Biotech 0100-20) 

 Coverslips 

 Confocal or wide-field microscope 

Steps 

Day Prior to Exosome Staining & Delivery 

1. Culture HUVECs in plastic flasks (T25s or T75s) to 75-80% coverage of flask. 

2. Coat microwell dishes with 1% gelatin.  250µL is sufficient for 10mm glass insert. 

3. Aspirate gelatin.  Add 1ml prewarmed HUVEC medium to microwell dishes (to prime 

dishes).  Incubate at 37°C. 

4. Harvest cells from plastic flasks.  Count. 

5. Seed 2500-5000 cells onto 10mm glass insert.  Incubate at 37°C for 1 hour. 

6. After 1 hour add additional HUVEC medium to bring final volume in dish to 2.5ml. 
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Exosome Staining & Delivery 

1. Prepare 1mM BODIPY solution: Resuspend powder in 354.25µL DMSO.  Make 

aliquots of stock.  Store all tubes at -20°C.  Protect all tubes from light. 

2. Add 1µL BODIPY stock solution to exosome sample to achieve 10µM treatment 

concentration.  Control: Add 1µL BODIPY stock solution to 1X PBS. 

3. Incubate for 20 minutes/37ºC in dark. 

4. Remove unbound dye with exosome spin column (follow manufacturer’s instructions 

for preparation of column). 

5. Incubate stained exosomes or control with HUVECs for 2 hours. 

6. After incubation period, aspirate medium. 

7. Wash ECs with warm PBS once. 

8. Fix ECs with 10% neutral buffered formalin; 1mL formalin/dish. Incubate at RT for 15 

minutes. 

9. Rinse 3X in PBS. 

10. Mount with DAPI-FluoroMount-G and put coverslip on sample. 

11. Observe samples with fluorescence microscopy. 
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APPENDIX C. CELL CULTURE & RNA PROTOCOLS 

C.1 Reticulocyte & K562 Culture Medium 

The following medium formulation (Table C1) was used to culture K562 cells, as 

well as for the incubation of reticulocytes isolated from peripheral blood. 

Table C1 – Supplies needed to prepare medium. 

Component Vendor/Cat# Quantity Formulation Final Conc. 

RPMI 1640 

(1X) medium 

Life 

Technologies 

(Invitrogen)/ 

11875093 

500mL 

Supplemented 

with l-

glutamine 

(2mM), no 

HEPES 

- 

Fetal bovine 

serum (FBS) 

Gibco/ 

A2720801 

Lot: 

FB11554HI 

500mL 

Exosome-

depleted 

 

10% v/v 

Pen/Strep 
Mediatech/  

30-002-CI 
100mL 

10K U/mL 

Penicillin 

10K µg/mL 

Streptomycin 

50 U/mL Pen 

50 µg/mL 

Strep 

Filtration unit 
ThermoFisher/ 

166-0045 
500mL unit - - 

Step 

1. Combine components in the amounts in Table C2 to produce 500 mL of medium. 

2. 0.2µm filter the medium into a sterile 500 ml bottle.  The volumes can be scaled 

accordingly. 

3. Store medium at 4ºC for up to one month. 
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Table C2 – Combination of medium components. 

Component Volume Storage 

RPMI 447.5mL 4°C 

Exosome-free FBS 50mL -20°C 

Pen/Strep 2.5mL -20°C 

C.2 Plating Endothelial Cells from Frozen Vials into T-75 Flasks 

Materials 

 T75 flask(s), pre-coated with 1% gelatin 

 Cell culture medium 

 Assorted sterile pipettes (1mL, 5mL, 10mL, 25mL) 

Steps 

1. Calculate the volume of culture medium that needs to be prepared: 

a. Add 15 mL culture medium directly to each T75 flask to be seeded, label 

and date flask, place in incubator for 30 minutes to equilibrate; 

b. Add 5 mL to a 15 mL tube which will be used to suspend cells from pellet, 

place in water bath. Prepare separate tube for each vial to be plated. 

2. At 20-25 minutes into equilibration of flasks, retrieve vials of cells from liquid N2 

storage. 

3. Thaw frozen vial by hand in water bath just until last bit of ice has melted, do not allow 

it to remain in the bath any longer. 

4. Transfer contents of thawed vial to tube containing warm culture medium, invert 2-3 

times to mix. 
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5. Retrieve T75 flask(s) from incubator, transfer cell suspension to flask(s) dividing as 

necessary.  Try not to exceed 2500 cells/cm2 recommended seeding density. Return 

flasks to incubator. 

6. Replace culture medium in newly seeded flask on the next day to limit exposure of 

cells to DMSO in cryopreservation medium. 

7. Continue to culture endothelial cells until they cover 75-80% of the flask surface, 

usually 3-4 days. 

8. Subculture cells using the Lonza Subculture ReagantPack (Cat# CC-5034) and 

maintain 2500 cells/cm2 seeding density in subsequent flasks. 

C.3 TaqMan Reverse Transcription  

Materials 

 Purified RNA (stored at -80°C) 

 Polypropylene microcentrifuge tubes (1.5 mL, sterile) 

 TaqMan MicroRNA Reverse Transcription Kit (RT) (Life Technologies 4366596, 200 

reactions, stored at -20°C) 

 5X RT Primer from TaqMan MicroRNA Assays, stored at -20°C 

 miR144 - Life Technologies 4427975/ID 002676, 50 reactions 

 TaqMan assays for housekeeping genes 

 Microcentrifuge, pre-chilled to 4°C 

 Nuclease-free water (stored at room temperature) 

Steps 

1. Wipe down bench area with 10% bleach prior to start. 

2. Allow the purified RNA, TaqMan® MicroRNA Reverse Transcription Kit 

components, and 5X RT Primer to thaw on ice. 

3. Aliquot nuclease-free water (e.g. 1 mL in a microcentrifuge tube) and chill on ice. 

4. Centrifuge tubes to bring solutions to the bottom of the tubes. 
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5. Determine volume of RNA to be added (1-500ng). 

6. In a 1.5-mL polypropylene tube, prepare the RT master mix on ice by scaling the 

volumes listed in Table C3 to the desired number of RT reactions. Add 0.5X for 

overage i.e., for 10 samples multiply all volumes by 10.5. Adding 10 to 20% overage 

accounts for pipetting losses. 

Table C3 – Reagants volumes for RT master mix. 

Component Master mix volume per 15µL reaction 

100mM dNTPs (with dTTP) 0.15µL 

MultiScribe™ Reverse Transcriptase, 

50U/µL 
1.00µL 

10✕ Reverse Transcription Buffer 1.50µL 

RNase Inhibitor, 20U/µL 0.19µL 

Nuclease-free water 4.16µL 

Total 7.00µL 

7. Create each 15µL RT reaction with: 

a. 7µL RT Master Mix 

b. Determined volume of RNA. 

c. 3µL of 5✕ RT primer from each assay set into the corresponding RT reaction 

tube. 

d. Balance with nuclease-free water to 15µL. 

8. Mix gently, then centrifuge briefly. 

9. Transfer 15µL solution into a 0.2-mL polypropylene reaction tube. 

10. Incubate the tube on ice for 5 minutes and keep it on ice until ready to load the 

thermal cycler.  
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11. Use the following stages (in order of occurrence) to program the thermal cycler: 

a. 30 minutes/16ºC 

b. 30 minutes/42ºC 

c. 5 minutes/85ºC 

d. Infinite/4ºC 

12. Set the reaction volume to 15.0µL. 

13. Load the reaction tube or plate into the thermal cycler. 

14. Start the RT run. 

15. If you do not immediately continue to PCR amplification after the RT run, store the 

RT reaction at −15 to −25°C. 

C.4 TaqMan qPCR  

Materials 

 Purified cDNA (stored at -20°C) 

 Polypropylene microcentrifuge tubes (1.5 mL, autoclaved) 

 TaqMan MicroRNA Assay 20X (stored at -20°C) 

 miR144 - Life Technologies 4427975/ID 002676, 150 rxns 

 TaqMan assays for housekeeping genes 

 TaqMan Universal PCR Master Mix II 2X, no UNG, 200 rxns (Life Technologies 

4440040, stored at 4°C) 

 Microcentrifuge, pre-chilled to 4°C 

 Optical adhesive covers (Applied Biosystems 4360954) 

Steps 

Prepare qPCR reaction mix 

1. Allow the purified cDNA and TaqMan® MicroRNA Assays to thaw on ice.  Protect 

the MicroRNA Assays from light with aluminum foil. 

2. Aliquot nuclease-free water (e.g. 1 mL in a microcentrifuge tube) and chill on ice. 

3. Centrifuge tubes to bring solutions to the bottom of the tubes. 
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4. Obtain a 1.5-mL polypropylene tube for each sample. 

5. Prepare the qPCR reaction mix on ice by scaling the volumes listed in Table C4 to at 

least three replicates of each sample including the no template controls. Make 3.5X 

for overage. Adding 10 to 20% overage accounts for pipetting losses.   

6. Invert solution several times to mix.  Then centrifuge briefly. 

Table C4 – qPCR reaction mix components. 

Component 
Rxn mix volume per 20-µl 

reaction 

TaqMan Small RNA Assay (20X) 1.00µL 

Product from RT reaction 1.00µL (1.33µL - max) 

TaqMan Universal PCR Master Mix (2X), no 

UNG 
10.00µL 

Nuclease-free water 8.00µL 

Total 20.00µL 

Prepare and run PCR reaction plate 

1. Transfer 20μL of the complete qPCR reaction mix (including assay and RT product) 

into each of three wells on a 48-, 96-, or 384-well plate.  Make note of sample 

placement in plate. 

2. Seal the plate with the optical cover to avoid evaporation of samples. 

3. Centrifuge the plate briefly if necessary. 

4. Load the plate into the instrument. 

5. Run the PCR System with the following parameters: 

a. Run Mode: Standard 

b. Sample Volume: 20µL 

c. Thermal cycling conditions in Table C5 
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Table C5 -- qPCR thermal cycling conditions. 

Step 

 

Enzyme 

Activation 
PCR 

HOLD 
CYCLE (40 cycles) 

Denature Anneal/extend 

Temperature 95°C 95°C 60°C 

Time 10 minutes 15 seconds 60 seconds 

6. Start the PCR run. 
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APPENDIX D. R CODE USED TO PERFORM STATISTICS 

 The following lines of codes were executed in the software R to perform statistics 

on the protein and exosome quantification data.  R was chosen over Excel because it offers 

greater freedom in defining the test parameters.  For example, changing the confidence 

level of the statistical tests was possible, which was necessary for computing the p-value 

of the 97.5% confidence level t-test in the flow cytometry analysis. 

 Figure D1 shows the code used to test the difference between the mean protein 

concentrations for K562 (n=5) and reticulocyte exosomes (n=3).  The comments (in green) 

are annotations to what the code is doing.  First, an F test was used to test the 

homoscedasticity of the two populations.  The result of that test influenced the “var.equal” 

parameter in the call to the t.test function.  Two t-tests were performed: a one-tailed test 

determining whether the difference between the means (K562 exosomes minus reticulocyte 

exosomes) was greater than 0 and a two-tailed test determining whether the difference 

between the means was not equal to 0.  The two-tailed tests is usually what is output to 

Excel and the p-value and test statistics are reported in Chapter 5.  Both tests returned p-

values less than 0.05, indicating a significant difference between the mean protein 

concentrations of the populations. 

 Similarly, Figure D2 shows the R code use to compare the difference between the 

mean exosome number for each of the populations.  The p-values for both t-tests in this 

case were greater than 0.05, indicating no significant difference between the mean exosome 

count for each 5µg protein equivalent of each sample. 
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Figure D1 – R code testing difference between mean protein concentrations. 

 

Figure D2  – R code testing difference between mean exosome counts (5µg samples). 

Figure D3 shows the code used to test the difference between the “exosome 

release potential” profiles of the K562 and reticulocyte exosomes.  The protein 

concentration per exosome between the two groups was not significantly different, as 

indicated by the two t-tests performed.  This result suggests that on average the cells 

release a comparable number of exosomes, that also have a comparable average amount 

of total protein.  However, in absolute terms there are about twice as many K562 
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exosomes per protein microgram equivalent of samples when dividing the average values 

in Figure 31. 

 

Figure D3 – R code testing difference between mean exosome counts (10µL samples). 
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